Original Article

Characterization and transfer of antimicrobial resistance in lactic acid bacteria from fermented dairy products in China

Chao Yang¹, Tao Yu²

¹ Faculty of Tourist Management, Xinxiang Vocational and Technical College, Xinxiang 453003, China ² College of Life Science and Technology, Xinxiang University, Xinxiang 453003, China

Abstract

Introduction: Lactic acid bacteria (LAB) are commonly found in foods and are also natural intestinal inhabitants in humans and most animals. However, information regarding antimicrobial resistance and the transfer of resistance genes of LAB from fermented dairy products in China is limited.

Methodology: In this study, LAB isolates (n = 82) of *Lactobacillus* (n = 43) and *Streptococcus thermophilus* (n = 39) were isolated from 51 commercial fermented food samples in China. All isolates were subjected to pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility, detecting resistance genes, as well as investigating the transferability of resistance genes.

Results: The 43 Lactobacillus isolates yielded 24 PFGE patterns and the 34 isolates of *S. thermophilus* generated 32 different PFGE patterns. Among the 43 Lactobacillus strains, the most commonly observed resistance was that to streptomycin (83.7%) and gentamycin (83.7%). Among the 39 *S. thermophilus* strains, the most frequently observed resistance was that to streptomycin (92.3%), gentamycin (87.2%), ciprofloxacin (79.5%), and chloramphenicol (71.8%), whereas the lowest level of resistance was that against erythromycin (7.7%). Antimicrobial resistance genes for erythromycin (*emrB*), gentamycin (*aac(6')-aph(2'')*), streptomycin (*ant(6)*), sulfamethoxazole (*sul1* and *sul11*), tetracycline (*tetM* and *tetS*) were detected in the 18 resistance LAB strains. Conjugation experiments showed that *tetM* from *L. delbrueckii* subsp. *bulgaricus* R6 and *tetS* from *L. plantarum* R41 were successfully transferred to *L. monocytogenes* by filter mating. Conclusions: LAB strains could potentially act as reservoirs of resistance genes and play an active role in the transfer of resistance to humans via the food chain.

Key words: Lactobacillus spp.; Streptococcus thermophilus; antimicrobial resistance; transfer; fermented dairy products.

J Infect Dev Ctries 2019; 13(2):137-148. doi:10.3855/jidc.10765

(Received 11 August 2018 - Accepted 05 February 2019)

Copyright © 2019 Yang *et al.* This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Lactic acid bacteria (LAB) are a group of grampositive bacteria that are non-spore-forming and can ferment hexose sugars and a variety of nutrients to primarily produce lactic acid. Some LAB species constitute the natural intestinal microbiota of humans and are beneficial to various physiological processes, particularly digestion, as well as in preventing gastrointestinal disorders [1]. Thus, LAB have been extensively used in the production of fermented foods and beverages in the food industry for decades and have acquired the "generally recognized as safe" (GRAS) status [2,3]. GRAS is a U.S. Food and Drug Administration (FDA) designation for a substance that, when added to food, is considered safe and exempt from the food additive tolerance requirements.

Due to the extensive use of antimicrobials around the world, the emergence of resistance microorganisms has become a major public health problem. Antimicrobial resistance of foodborne pathogens has been well studied and documented [3]. Researchers have also investigated the antimicrobial resistance of commensal bacteria such as LAB [4,5]. Antimicrobial resistance in bacteria may be intrinsic or acquired [6,7]. Several species of Lactobacillus exhibit intrinsic resistance to quinolones, trimethoprim, sulphonamides, and vancomycin [2]. In contrast, acquired resistance is present in some strains within a species usually susceptible to the antimicrobial under consideration, and might be horizontally spread among bacteria [2]. Earlier studies have described the development of antimicrobial resistance in LAB from fermented foods [4]. Several investigators have speculated that LAB could serve as reservoir for antimicrobial resistance genes similar to those found in human pathogens [8,9]. The main threat associated with these bacteria is that these can transfer resistance genes to other microorganisms, including pathogens, through the food

chain. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) of the European Food Safety Authority (EFSA) recommends that bacterial strains carrying transferable antimicrobial resistance genes should not be used in fermented and probiotic foods for human [10].

Fermented dairy products are popular products in China and are generally produced by adding *Lactobacillus* species and *Streptococcus thermophilus* as fermenting starter or probiotic strains. Such products are consumed without further heating, thereby providing a potential vehicle for antimicrobial resistant bacteria. However, information regarding antimicrobial resistance and the transfer of resistance genes of LAB from fermented dairy products in China is limited. Therefore, the objectives of the present study were to investigate the occurrence of antimicrobial resistance and the presence and transferability of resistance genes among LAB strains isolated from fermented dairy products in China.

Methodology

Sample collection

A total of 51 commercial fermented food samples, including yogurt (n = 30), old yogurt (n = 13), and fermented dairy drink (n = 8), were purchased from supermarkets between May and October 2014 in Henan Province, located in the central part of China. All samples come from products produced by ten different manufacturers. Old yogurt is a traditional Chinese fermented dairy product, belonging to the set-style yogurt. The difference between old yogurt and normal yogurt is the processing steps. Old yogurt is made by pouring the cultured milk into individual containers and then incubating without any further stirring, while normal yogurt is made by incubating the cultured milk mixture in a large vat and then stirring prior to packaging. Fermented dairy drink has the lower protein content than that of normal yogurt and old yogurt. The samples were transported to the laboratory in an icebox and then immediately used for bacterial isolation.

Isolation and identification of LAB

LAB isolation was performed using standard procedures described in the National Standards of the People's Republic of China (GB 4789.35-2010). Briefly, 25 g of each sample was aseptically collected, mixed with 225 mL of sterilized physiological saline, and homogenized in a stomacher for 1 minute (Interscience, Saint Nom, France). The mixture was serially diluted with physiological saline and plated on MRS agar (Land Bridge Technology Co. Ltd., Beijing, China) and Modified Chalmers (MC) agar (Land Bridge Technology Co. Ltd., Beijing, China) and incubated at 37°C for 48 hours. Lactobacilli were selected on MRS agar plates incubated in anaerobic conditions, whereas S. thermophilus was isolated on MC agar plates in an aerobic environment [3]. After the incubation, colonies were selected and subjected to Gram staining and identified by Lactobacillus biochemical identification kit or S. thermophilus Bridge biochemical identification kit (Land Technology Co. Ltd., Beijing, China). The biochemical identification for lactobacilli included fermentation tests from esculin, cellobiose, maltose, mannitol, salicin, sorbitol, sucrose and raffinose; for S. thermophilus, it included fermentation tests from inulin, lactose, mannitol, salicin, sorbitol, hippuric acid and esculin. Then, the LAB isolates was further confirmed by PCR-based 16S rDNA sequencing using a pair of universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-GGTTACCTTGTTACGACTT-3') [11].

Pulsed-field gel electrophoresis (PFGE)

PFGE typing of all LAB isolates was performed as previously described [12,13]. Briefly, after adding 10 µg/µL of lysozyme solution (Sigma-Aldrich, St. Louis, MO, USA), each bacterial suspension was incubated at 37°C for 10 min. The treated bacterial suspension was then mixed with low-melting point agarose (Bio-Rad, Hercules, CA, USA) in buffer and pipetted into plug molds. The plugs were lysed with a cell lysis buffer and washed 4 times by TE buffer. Next, agarose-embedded DNA of Lactobacillus species and S. thermophilus was digested with 30 U of AscI (Takara Bio Inc., Otsu, Shiga, Japan) for 12 hours at 37 °C and 20 U of SmaI (Takara Bio Inc., Otsu, Shiga, Japan) at 30°C overnight, respectively. The choice of enzymes used in our study was performed according to the previous studies [12-15]. The restriction fragments were separated using the CHEF MAPPER apparatus (Bio-Rad, Hercules, CA, USA) at 6 V/cm for 22 hours, with switch time ranging from 1 to 15 seconds for Lactobacillus and 5.3 to 34.9 seconds for S. thermophilus. The gel was stained in an ethidium bromide solution and imaged using a Bio-Rad Gel Doc. PFGE patterns were compared using Quantity One software (Bio-Rad, Hercules, CA, USA). A dendrogram was deduced from the matrix of similarities by using the unweighted pair-group method with arithmetic means (UPGMA). This specific computer-assisted analysis was performed according to the manufacturer's instructions.

	The m	inimum i	nhibitory co	oncentrations	(MICs) of
9	antimic	crobials,	including	ampicillin	(0.032-64
μg	/mL),	chloram	phenicol	(0.125-256	μg/mL),

ciprofloxacin (0.125-256 μ g/mL), erythromycin (0.032-8 μ g/mL), gentamycin (1-256 μ g/mL), streptomycin (1-256 μ g/mL), sulfamethoxazole (8-512 μ g/mL), tetracycline (1-64 μ g/mL), and vancomycin

Table 1. MIC break	points for Lactobacillus s	species and Streptococcus	<i>thermophilus</i> in this study.
I able I. MIC Olean	points for Euclobuching s	peeres and bir epidedecus	incritiophilius in this study.

Antimicrobial	Species	Proposed breakpoint, MIC (µg/mL)								
	Species	This paper	EFSA ^a	FEEDAP^b	Other articles					
Ampicillin	L. delbrueckii subsp. bulgaricus	1	1	1	2°, 4 ^d , 8 ^e					
	L. plantarum	2	2	2	2°, 4 ^d , 8 ^e					
	L. paracasei	2	2	4	2°, 4 ^d , 8 ^e					
	L. acidophilus	1	1	1	2°, 4 ^d , 8 ^e					
	S. thermophilus	2	2	2	8 ^e					
Chloramphenicol	L. delbrueckii subsp. bulgaricus	4	4	4	16 ^{c,d,e}					
	L. plantarum	8	8	8	16 ^{c,d,e}					
	L. paracasei	4	4	4	16 ^{c,d,e}					
	L. acidophilus	4	4	4	16 ^{c,d,e}					
	S. thermophilus	4	4	4	16 ^e					
Ciprofloxacin	L. delbrueckii subsp. bulgaricus	4			$4^{c,e,f}$, > 32^{d}					
1	L. plantarum	4			$4^{c,e,f} > 32^{d}$					
	L. paracasei	4			$4^{c,e,f} > 32^{d}$					
	L. acidophilus	4			$4^{c,e,f} > 32^{d}$					
	S. thermophilus	4			4 ^{c,e}					
Erythromycin	L. delbrueckii subsp. bulgaricus	1	1	1	4°, 1°					
	L. plantarum	1	1	1	4 ^{c, d} , 1 ^e					
	L. paracasei	1	1	1	4 ^c , 2 ^d , 1 ^e					
	L. acidophilus	1	1	1	4 ^c , 1 ^d , 1 ^e					
	S. thermophilus	2	2	2	1°					
Gentamycin	L. delbrueckii subsp. bulgaricus	16	16	16	1°					
Gentuniyeni	L. plantarum	16	16	16	1°, 128 ^d , 16 ^e					
	L. paracasei	32	32	32	$1^{\circ}, 128^{\circ}, 10^{\circ}$ $1^{\circ}, 128^{\circ}, 16^{\circ}$					
	L. acidophilus	16	16	16	$1^{\circ}, 126^{\circ}, 16^{\circ}$ $1^{\circ}, 256^{\circ}, 16^{\circ}$					
	S. thermophilus	32	32	32	1,250,10 16 ^e					
Streptomycin	L. delbrueckii subsp. bulgaricus	16	32 16	16	$16^{\circ}, > 256^{\circ}$					
sucptomycm	L. plantarum	16	10	10	$16^{\circ}, > 256^{\circ}$ $16^{\circ}, > 256^{\circ}$					
		16		64	$16^{\circ}, > 256^{\circ}$ $16^{\circ}, > 256^{\circ}$					
	L. paracasei		16							
	L. acidophilus	16	16	16	$16^{\rm c}, > 256^{\rm d}$					
S1£	S. thermophilus	64	64	64	16 ^e					
Sulfamethoxazole	L. delbrueckii subsp. bulgaricus	512			512°					
	L. plantarum	512			512°					
	L. paracasei	512			512°					
	L. acidophilus	512			512°					
	S. thermophilus	512			512°					
Tetracycline	L. delbrueckii subsp. bulgaricus	4	4	4	16°, 8°					
	L. plantarum	32	32	32	16°, 64 ^d , 8°					
	L. paracasei	4	4	4	$16^{\circ}, 4^{d}, 8^{e}$					
	L. acidophilus	4	4	4	$16^{\circ}, 4^{d}, 8^{e}$					
	S. thermophilus	4	4	4	8 ^e					
Vancomycin	L. delbrueckii subsp. bulgaricus	2	2	2	4°, > 1°					
	L. plantarum	4			4°, > 1°					
	L. paracasei	4			4°, > 1°					
	L. acidophilus	2	2	2	$4^{c,d}, > 1^{e}$					
	S. thermophilus	4	4	4	> 1 ^e					

^a Breakpoints defined by the European Food Safety Authority [36] for *Lactobacillus* spp. and *S. thermophilus*; ^b Breakpoints defined by the EFSA panel on additives and products or substances used in animal feed (FEEDAP) [37] for *Lactobacillus* spp. and *S. thermophilus*; ^c Breakpoints defined by the European Commission [38] for *Lactobacillus* spp.; ^d Breakpoints suggested by Danielsen and Wind [39] for *Lactobacillus* spp.; ^e Breakpoints suggested by Katla *et al.* [40] for *Lactobacillus* spp. and *Streptococcus* spp.; ^f Breakpoints suggested by Zarazaga *et al.* [41] for *Lactobacillus* spp.

 $(0.032-256 \,\mu\text{g/mL})$, were determined by using the broth microdilution method. For Lactobacillus, LAB susceptibility test medium (LSM), a mixed formulation containing Iso-Sensitest broth (Oxoid Ltd., Basingstoke, Hampshire, England) (90%) and MRS (10%) was used [16]. For S. thermophilus, Iso-Sensitest broth (90%) supplemented with M17 broth medium (10%) and lactose (0.5%) was used [17,18]. The inoculum of each test strain was prepared by suspending single colonies from the LSM agar plates in 5 mL of 0.85% NaCl solution to a turbidity of McFarland 0.5 standard and subsequently diluting these to a ratio of 1:10 in NaCl solution. Then the inoculated plates were incubated in the presence of 5% CO₂ at 37°C for 24 hours. The MIC values of each antimicrobial were visually evaluated as the lowest concentrations at which no growth was observed.

 Table 2. Primers used for PCR in this study.

Enterococcus faecalis ATCC 29212 and *Staphylococcus aureus* ATCC 29213 were used as control strains. The assay was repeated on 3 independent occasions and in duplicate each time. Because there is no definitive breakpoint list for LAB, the interpretation for susceptibility status was determined by comparing the MIC values to the proposed breakpoints of previous studies (Table 1). Strains with MIC equal to or higher than the reported breakpoints were considered resistant.

Amplification of antimicrobial resistance genes

DNA was extracted from LAB strains using a commercial kit (Tiangen Biotech, Beijing, China) according to the manufacturer's instructions. Antimicrobial resistance genes for β -lactam (*bla*), chloramphenicol (*cat*), ciprofloxacin (*qnrA*, *qnrB*, and

Target gene	Primer	Sequence (5'-3')	Annealing temperature (°C)	Amplicon size (bp)	Reference
strA	strA-F	CTTGGTGATAACGGCAATTC	55	548	[20]
	strA-R	CCAATCGCAGATAGAAGGC			
strB	strB-F	ATCGTCAAGGGATTGAAACC	56	509	[20]
	strB-R	GGATCGTAGAACATATTGGC			
ant(6)	ant6-F	ACTGGCTTAATCAATTTGGG	53	597	[20]
	ant6-R	GCCTTTCCGCCACCTCACCG			
qnrA	qnrA-F	TCAGCAAGAGGATTTCTCA	48	627	[42]
	qnrA-R	GGCAGCACTATTACTCCCA			
qnrB	qnrB-F	ATGACGCCATTACTGTATAA	53	562	[42]
	qnrB-R	GATCGCAATGTGTGAAGTTT			
qnrS	qnrS-F	ACCTTCACCGCTTGCACATT	57	571	[42]
	qnrS-R	CCAGTGCTTCGAGAATCAGT			
aac(6')-aph(2")	aac-F	CCAAGAGCAATAAGGGCATACC	58	675	[42]
	aac-R	ACCCTCAAAAACTGTTGTTGC			
tetK	tetK-F	TCGATAGGAACAGCAGTA	55	169	[1]
	tetK-R	CAG CAG ATC CTA CTC CTT			
tetL	tetL-F	TCGTTAGCGTGCTGTCATTC	55	267	[23]
	tetL-R	GTATCCCACCAATGTAGCCG			
tetM	tetM-F	GTGGACAAAGGTACAACGAG	55	406	[23]
	tetM-R	CGGTAAAGTTCGTCACACAC			
tetO	tetO-F	AACTTAGGCATTCTGGCTCAC	55	515	[23]
	tetO-R	TCCCACTGTTCCATATCGTCA			
tetS	tetS-F	CATAGACAAGCCGTTGACC	55	667	[23]
	tetS-R	ATGTTTTTGGAACGCCAGAG			
tetW	tetW-F	GAGAGCCTGCTATATGCCAGC	55	168	[23]
	tetW-R	GGGCGTATCCACAATGTTAAC			
vanA	vanA-F	GCAAGTCAGGTGAAGATGG	58	394	[1]
	vanA-R	ACCTCGCCAACAACTAACGC			
vanB	vanB-F	ACCCTGTCTTTGTGAAGCCGGCAC	58	390	[1]
	vanB-R	CAAAAAAAGATCAACACGAGCAAGCCC			
sulI	sulI-F	TCACCGAGGACTCCTTCTTC	54	331	[21]
	sulI-R	CAGTCCGCCTCAGCAATATC			
sulII	sulII-F	CCTGTTTCGTCCGACACAGA	54	435	[21]
	sulII-R	GAAGCGCAGCCGCAATTCAT			

qnrS), erythromycin (*emrA*, *emrB*, and *emrC*), gentamycin (aac(6')-aph(2")), streptomycin (strA, strB, and *ant(6)*), sulfamethoxazole (*sull* and *sulll*), tetracycline (tetK, tetL, tetM, tetO, tetS, and tetW), and vancomycin (vanA and vanB) were PCR amplified by using the primers listed in Table 2. The PCR mixture consisted of 20 ng of bacterial DNA, 0.6 µM of each primer, 200 µM of deoxynucleoside triphosphate (Takara Bio Inc., Otsu, Shiga, Japan), 1× PCR buffer (Takara Bio Inc., Otsu, Shiga, Japan), and 0.5 U Taq DNA polymerase (Takara Bio Inc., Otsu, Shiga, Japan) in a total volume of 25 µL. The PCR conditions were as follows: initial denaturation at 94°C for 5 minutes followed by 30 cycles of denaturation at 94°C for 1 minute, annealing at different temperatures depending on the primer set for 1 minute, extension at 72°C for 1 minute, and a final extension at 72°C for 7 minutes. The purified PCR products were sequenced, and the DNA sequence data were analyzed using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/).

Transfer of antimicrobial resistance

Transfer of antimicrobial resistance was analyzed by filter mating experiments as described by Feld *et al.* [19]. *Listeria monocytogenes* strain L82, isolated from quick frozen food made of flour in Hebei province, was used as the recipient. Antimicrobial susceptibility tests showed that L82 was sensitive to erythromycin, gentamycin, streptomycin, sulfamethoxazole, and tetracycline, and resistance to rifampin. Eighteen LAB strains harboring resistance genes were used as donors (Table 3). Briefly, equal volumes of donor and recipient strain were mixed, filtered through a sterile 0.45- μ m pore size filter and placed on brain heart infusion (BHI; Land Bridge) agar plates. After incubation at 37°C for 24 h, the cells were suspended in phosphate buffer saline and spread on selective plates containing rifampin (8 μ g/mL) and erythromycin (1 μ g/mL) or gentamycin (8 μ g/mL) or sulfamethoxazole (256 μ g/mL) or tetracycline (2 μ g/mL). Presumptive *L. monocytogenes* transconjugants were confirmed to be *L. monocytogenes* by using a *Listeria monocytogenes* biochemical identification kit (Land Bridge). PCR was used to confirm that the transconjugants carried the same resistance gene as their donors. Conjugation frequency was calculated as the ratio of the number of transconjugants to the number of recipient cells.

Results

Isolation and identification of LAB

A total of 58 strains of LAB, including *L*. delbrueckii subsp. bulgaricus (n=19), *L*. plantarum (n = 5), *L*. paracasei (n = 4), *L*. acidophilus (n = 2), and *S*. thermophilus (n = 28) were isolated from the yogurt samples. Nineteen of the LAB isolates belonging to species *L*. delbrueckii subsp. bulgaricus (n = 9) and *S*. thermophilus (n = 10) were isolated from the old yogurt samples. Five LAB isolates belonging to species *L*. delbrueckii subsp. bulgaricus (n = 3), *L*. plantarum (n = 1), and *S*. thermophilus (n = 1) were isolated from fermented dairy drink samples.

Table 3. Characteristics of LAB strains with antimicrobial resistance genes.

Strain	Source	Resistance phenotype ^a	Resistance gene		
L. delbrueckii subsp. bulgaricus R2	Yogurt	SUL, TET	sull, tetM		
L. plantarum R3	Yogurt	GEN	aac(6')-aph(2")		
L. delbrueckii subsp. bulgaricus R5	Yogurt	SUL	sull		
L. delbrueckii subsp. bulgaricus R6	Yogurt	SUL, TET	sull, tetM		
L. delbrueckii subsp. bulgaricus R8	Yogurt	GEN	aac(6')-aph(2")		
L. delbrueckii subsp. bulgaricus R12	Yogurt	SUL	sull		
L. plantarum R18	Yogurt	GEN, SUL	aac(6')-aph(2"), sull		
L. delbrueckii subsp. bulgaricus R21	Yogurt	SUL	sull		
L. delbrueckii subsp. bulgaricus R26	Yogurt	SUL	sull		
L. delbrueckii subsp. bulgaricus R30	Yogurt	STR	ant(6)		
L. delbrueckii subsp. bulgaricus R36	Old yogurt	TET	tetM		
L. plantarum R41	Fermented dairy drink	TET	tetS		
S. thermophilus S7	Yogurt	ERM	ermB		
S. thermophilus S10	Yogurt	SUL	sulI		
S. thermophilus S12	Yogurt	ERM	ermB		
S. thermophilus S13	Yogurt	ERM	ermB		
S. thermophilus S15	Yogurt	SUL	sull		
S. thermophilus S17	Yogurt	SUL	sulI, sulII		

^a ERM, erythromycin; GEN, gentamycin; STR, streptomycin; SUL, sulfamethoxazole; TET, tetracycline.

Genetic diversity of LAB by using PFGE typing

The genetic fingerprint of the 43 *Lactobacillus* isolates was determined using PFGE, and 24 distinct PFGE profiles were identified (Figure 1). The results of the analysis showed that 10 PFGE types occurred at least 2 times, accounting for 67.4% of the isolates characterized. A total of 14 PFGE types occurred only once and accounted for 32.6% of the strains. PFGE type LP24 predominated and included 6 isolates of *L. delbrueckii* subsp. *bulgaricus*.

PFGE was also conducted to determine the genetic relatedness of the 39 *S. thermophilus* isolates. However, 5 isolates failed to generate distinct PFGE pattern despite repeated attempts. The rest of the 34 isolates could be categorized into 32 different PFGE patterns (Figure 2). Only 2 PFGE types occurred 2 times, accounting for 11.8% of the strains characterized. A total of 30 PFGE types occurred once and accounted for 88.2% of the isolates.

Antimicrobial resistance phenotypes

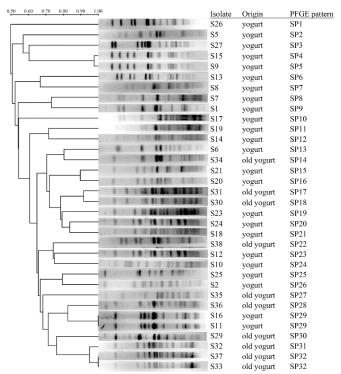
The results of the sensitivity tests of the strains to 9 different antimicrobials are shown in Table 4. Among the 31 strains of *L. delbrueckii* subsp. *bulgaricus*, the most commonly observed resistance was that to streptomycin (96.8%), followed by gentamycin (93.5%), tetracycline (90.3%), and ciprofloxacin (87.1%). None of the *L. delbrueckii* subsp. *bulgaricus* strains exhibited resistance to erythromycin.

Figure 1. Dendrogram of PFGE patterns based on *AscI* digestion of 43 *Lactobacillus* strains.

0.50 0.60 0.70 0.80 0.90 1.00				
0.50 0.50 0.70 0.80 0.50 1.00	Isolate	Species		PFGE pattern
	R34	L. delbrueckii subsp. bulgaricus		LP1
	R39	L. delbrueckii subsp. bulgaricus		LP2
1 1 1 1 1 1 1 1 1 1	R26	L. delbrueckii subsp. bulgaricus		LP3
	R27	L. delbrueckii subsp. bulgaricus		LP3
88 8 18 181 M 188	R35	L. delbrueckii subsp. bulgaricus		LP3
11 1 10 100 M MM	R43		fermented dairy drink	
	R18	L. plantarum		LP4
	R41	L. plantarum	fermented dairy drink	
	R14	L. delbrueckii subsp. bulgaricus		LP5
	R20	L. delbrueckii subsp. bulgaricus		LP5
	R30	L. delbrueckii subsp. bulgaricus		LP5
	R3	L. plantarum		LP6
1 1 1 1 1 1 1 1 1	R15	L. plantarum		LP6
	R1			LP7
	R28	L. delbrueckii subsp. bulgaricus		LP7
	R19	L. paracasei		LP8
	R23	L. paracasei		LP8
	R17	L. acidophilus	yogurt	LP8
	R7	L. acidophilus	yogurt	LP9
	R16	L. plantarum	yogurt	LP10
	R29	L. delbrueckii subsp. bulgaricus		LP11
	R4	L. delbrueckii subsp. bulgaricus		LP12
	R12	L. delbrueckii subsp. bulgaricus		LP13
	R10	L. paracasei		LP14
	R13	L. paracasei		LP14
	R42	I., delbrueckii subsp. bulgaricus		
	R40	L. delbrueckii subsp. bulgaricus		
1.1.0	R32	L. delbrueckii subsp. bulgaricus		LP17
	R6	L. delbrueckii subsp. bulgaricus		LP18
	R21	L. delbrueckii subsp. bulgaricus		LP18
	R33	L. delbrueckii subsp. bulgaricus		LP18
	R25	L. plantarum		LP19
	R31	L. delbrueckii subsp. bulgaricus		LP20
	R5	L. delbrueckii subsp. bulgaricus		LP21
	R9	L. delbrueckii subsp. bulgaricus		LP22
	R2	L. delbrueckii subsp. bulgaricus		LP23
	R38	L. delbrueckii subsp. bulgaricus		LP23
	R8	L. delbrueckii subsp. bulgaricus		LP24
	R11	L. delbrueckii subsp. bulgaricus		LP24
	R22	L. delbrueckii subsp. bulgaricus		LP24
1 1 101 10 10	R24	I., delbrueckii subsp. bulgaricus		LP24
1 1 1818 18 1	R36	L. delbrueckii subsp. bulgaricus		LP24
	R37	L. delbrueckii subsp. bulgaricus	old yogurt	LP24

All of the 6 strains of *L. plantarum* exhibited resistance to streptomycin and vancomycin. Resistance to gentamycin, ciprofloxacin, sulfamethoxazole, chloramphenicol, and tetracycline was also observed. None of the strains exhibited resistance to ampicillin and erythromycin.

Four strains of *L. paracasei* exhibited sensitivity to all tested antimicrobials except for vancomycin, ciprofloxacin, and sulfamethoxazole.


For the 2 strains of *L. acidophilus*, resistance to gentamycin, ciprofloxacin, and tetracycline was observed. Both strains were susceptible to the rest of the antimicrobials.

Among the 39 strains of *S. thermophilus*, the most commonly observed resistance was that to streptomycin (92.3%), followed by gentamycin (87.2%), ciprofloxacin (79.5%), and chloramphenicol (71.8%). A small percentage of the strains were resistant to erythromycin.

Detection of antimicrobial resistance genes

The presence of antimicrobial resistance genes in all the LAB strains was determined by PCR analysis (Table 3). None of the resistance genes was detected in corresponding susceptible strains. For example, *sul* genes were found only in sulfamethoxazole-resistant strains, not in sulfamethoxazole-sensitive strains.

Figure 2. Dendrogram of PFGE patterns based on *Sma*I digestion of 34 *S. thermophilus* strains.

	Species	Number of strains with MIC (µg/mL) as follows												Resistanc	
Antimicrobial	(no. of strains tested)	≤ 0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	≥ 512	(%)
Ampicillin	L. delbrueckii subsp. bulgaricus (31)	6	4	14	5	2									7 (22.6)
	L. plantarum (6)	4	1	1											0
	L. paracasei (4)	3	1												0
	L. acidophilus (2)		2												0
	S. thermophilus (39)	6	3	8	6	15	1								16 (41.0
	Total (82)														23 (28.0
Chloramphenicol	L. delbrueckii subsp. bulgaricus (31)				3	4	14	8	2						24 (77.4
	L. plantarum (6)					1	4	1							1 (16.7)
	L. paracasei (4)				1	3									0
	L. acidophilus (2)				1	1									0
	S. thermophilus (39)			2	5	4	15	6	3	4					28 (71.8
	Total (82)														53 (64.6
Ciprofloxacin	L. delbrueckii subsp. bulgaricus (31)			1	1	2	8	5	7	3	4				27 (87.1
*	L. plantarum (6)			1		2		2		1					3 (50.0)
	L. paracasei (4)			1		1	1	1							2 (50.0)
	L. acidophilus (2)				1			1							1 (50.0
	S. thermophilus (39)			2	1	5	8	7	7	5	4				31 (79.5
	Total (82)														64 (78.0
Erythromycin	L. delbrueckii subsp. bulgaricus (31)	17	5	9											0
5	L. plantarum (6)	5		1											0
	L. paracasei (4)		4												0
	L. acidophilus (2)	1	1												0
	S. thermophilus (39)	17	11	6	2	2		1							3 (7.7)
	Total (82)														3 (3.7)
Gentamycin	L. delbrueckii subsp. bulgaricus (31)						2		5	4	9	11			29 (93.5
5	L. plantarum (6)							1	3	1	1				5 (83.3)
	L. paracasei (4)						1	2	1						0
	L. acidophilus (2)								2						2 (100)
	S. thermophilus (39)								5	15	9	10			34 (87.2
	Total (82)														70 (85.4
Streptomycin	L. delbrueckii subsp. bulgaricus (31)							1	1	2	10	17			30 (96.8
1 7 1	L. plantarum (6)									4	1	1			6 (100)
	L. paracasei (4)						2	2		-	-	-			0
	L. acidophilus (2)						-	2							0
	S. thermophilus (39)							-	3	12	10	14			36 (92.3
	Total (82)								5	÷=	10				72 (87.8

Table 4. Minimum inhibitory concentration (MIC) values of selected antimicrobials against LAB strains.

	Spacios	Number of strains with MIC (µg/mL) as follows												- Resistance	
Antimicrobial	Species (no. of strains tested)	≤ 0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	≥ 512	(%)
Sulfamethoxazole	L. delbrueckii subsp. bulgaricus (31)											2	17	12	12 (38.7)
	L. plantarum (6)												4	2	2 (33.3)
	L. paracasei (4)											2	1	1	1 (25.0)
	L. acidophilus (2)											2			0
	S. thermophilus (39)										4	11	19	5	5 (12.8)
	Total (82)														20 (24.4)
Tetracycline	L. delbrueckii subsp. bulgaricus (31)					3	11	16	1						28 (90.3)
-	L. plantarum (6)				1	1	2		1	1					1 (16.7)
	L. paracasei (4)				2	2									0
	L. acidophilus (2)					1	1								1 (50.0)
	S. thermophilus (39)				5	17	5	4	8						17 (43.6)
	Total (82)														47 (57.3)
Vancomycin	L. delbrueckii subsp. bulgaricus (31)	7	3	8	2	4	4	2	1						11 (35.5)
-	L. plantarum (6)							2	2	1	1				6 (100)
	L. paracasei (4)							1	3						4 (100)
	L. acidophilus (2)	1		1											0
	S. thermophilus (39)	4	8	8	3	4	4	7	1						12 (30.8)
	Total (82)														33 (40.2)

Table 4 (continued). Minimum inhibitory concentration (MIC) values of selected antimicrobials against LAB strains.

Seven resistance genes (*ermB*, *aac*(6')-*aph*(2"), *ant*(6), *sulI*, *sulII*, *tetM* and *tetS*) conferring resistance to 5 antimicrobials (erythromycin, gentamycin, streptomycin, sulfamethoxazole and tetracycline) were detected in 18 resistant LAB strains. Among these strains, 14 strains carried 1 resistance gene and 4 strains harbored 2 different resistance genes.

Transfer of antimicrobial resistance genes

Eighteen LAB strains that tested positive for resistance genes were used as donors, whereas *L. monocytogenes* L82 was used as the recipient strain in the filter mating experiments. The results showed that the *tetM* gene from *L. delbrueckii* subsp. *bulgaricus* R6 (resistance to tetracycline at 8 µg/mL) and the *tetS* gene from *L. plantarum* R41 (resistance to tetracycline at 32 µg/mL) were successfully transferred to the recipient. All transconjugants were resistant to tetracycline and positive for *tetM* or *tetS* genes. The transfer frequency in the filter mating experiments was 7.3×10^{-7} for *L. delbrueckii* subsp. *bulgaricus* R6 and 2.9×10^{-6} for *L. plantarum* R41.

Discussion

PFGE, which is considered as the gold standard for bacterial molecular typing due to its strong discriminatory power, was employed to investigate genetic diversity of LAB strains from fermented food samples. In the present study, 43 Lactobacillus strains yielded 24 PFGE patterns, whereas 55.8% of the strains displayed a different PFGE profile. A similar genetic diversity was also observed among Lactobacillus strains from fermented dairy products in China, representing 51.5% of the distinguishable PFGE patterns [12]. PFGE type LP8 consisted of 3 strains of Lactobacillus (L. paracasei R19 and R23, and L. acidophilus R17). Strains belonging to different species exhibited the same PFGE pattern, which has also been reported in other study [12]. The restriction enzyme used in our study could give good results for the majority of Lactobacillus strains, except for three strains of LP8. Maybe, the strains of LP8 could be differentiated by PFGE using another enzyme or by other molecular typing methods, such as random amplified polymorphic DNA (RAPD). Here, 32 PFGE patterns were observed, thereby revealing a high genetic diversity among the 34 strains of S. thermophilus. Erkus et al. [15] recently reported that 61 S. thermophilus strains from artisanal Yuruk yogurts vielded 22 distinct PFGE types. However, 5 strains of S. thermophilus failed to produce discrete PFGE patterns. There is the possibility that the restriction

enzyme used in the present study (*SmaI*) was not optimal for those strains. Further studies are needed to distinguish the LAB strains by employing other restriction enzymes for PFGE or other molecular typing methods.

Resistance to streptomycin, gentamycin, and ciprofloxacin was observed most frequently in the 82 LAB strains (Table 4), which was consistent with the findings of previous studies [9,20,21]. Our results also supported the view that lactobacilli are generally intrinsically resistant quinolones to and aminoglycosides [3,9]. The resistance of lactobacilli to sulphonamides is also considered as intrinsic [22]. However, a low level of resistance to sulfamethoxazole (34.9%, 15/43 strains) was observed in the strains of lactobacilli investigated in the present study. This difference may due to the different media used in the MIC determination as well as differences in the origin of the strains. More than half of the LAB strains exhibited resistance tetracycline to and chloramphenicol, which was in agreement with the findings of Zhou et al. [20]. Generally, LAB are susceptible to antimicrobials such as erythromycin, which inhibits protein synthesis [23]. In this study, the majority of the LAB strains were sensitive to erythromycin. A widespread susceptibility toward the inhibitors of cell wall synthesis (such as ampicillin and penicillin) has been observed in various species of lactobacilli that were from different sources, including cheese [24], probiotics or fermented foods [20], and human intestine [25]. Similarly most of the LAB strains tested in the present study were found to be sensitive to ampicillin.

The ermB gene was detected in 3 erythromycinresistant strains. This finding was consistent with the results of previous reports that the *ermB* gene was more frequently detected in LAB strains than other resistance determinants (ermA and ermC) [1,23]. The aac(6')aph(2'') gene encodes the bifunctional enzyme 6'acetyltransferase-2"-phosphotransferase, which confers resistance to all aminoglycosides, except for streptomycin. This gene is commonly detected in highlevel gentamycin-resistant Enterococcus faecalis isolates [26]. The ant(6) gene, which is associated with streptomycin resistance in enterococci [27], was detected in one L. delbrueckii subsp. bulgaricus strain. The sulfamethoxazole resistance genes sull and sullI have been reported in various bacterial species [28]. However, information on the presence of these genes in LAB strains is limited. It is worth noting that the sul gene was detected in lactobacilli and S. thermophilus strains in our study. Several tetracycline-resistant determinants (tetM, tetO, tetS, and tetW) or the efflux pump proteins (tetK and tetL) have also been reported [29]. In the current study, the tetM gene was detected in L. delbrueckii subsp. bulgaricus isolated from yogurt and old yogurt. This gene has also been previously reported in L. plantarum that was isolated from cheese [30], fermented vegetables [3], and meat products [1]. In addition, 1 strain of L. plantarum from fermented dairy drink harbored the tetS gene. Other tetracycline resistance genes have also been identified in lactobacilli and S. thermophilus [7,31]; however, these were not detected in any of these strains in the present study. The corresponding resistance genes were absent in various resistant strains, thereby suggesting that other resistance mechanisms may be responsible for their resistance to antimicrobial drugs.

The transfer of conjugative plasmids is known to be the most common mechanism for genetic exchange between bacteria, as plasmid conjugation can occur at high frequency and is able to transfer resistance genes [32]. To date, several in vitro studies on conjugative transfer of antimicrobial resistance determinants from lactobacilli to other bacteria have been reported [33,34]. An erythromycin-resistant plasmid (pLFE1) could be transferred from L. plantarum to L. rhamnosus, Lactococcus lactis, and E. faecalis [19]. Toomey et al. [1] reported that the *tetM* gene of *L*. *plantarum* was transferred to L. lactis BU-2-60 and E. faecalis JH2-2 in mating experiments at a low conjugation frequency. In a recent study, the *ermB* gene from *L*. *fermentum* and L. salivarius, and the tetM gene from L. plantarum and L. brevis were successfully transferred to E. faecalis 181 [3]. In several previous studies, E. faecalis was often used as recipient [3,19]. In the present study, L. monocytogenes, an important foodborne pathogen, was selected as recipient. Only the tetM gene from L. delbrueckii subsp. bulgaricus and the tetS gene from L. plantarum were successfully transferred to the recipient L. monocytogenes L82, indicating that the tet genes could be located on conjugative plasmids in the two strains. Furthermore, the transfer of resistant genes from commensal bacteria to pathogens in the human intestine has been reported, potentially resulting in food poisoning that is more difficult to treat with conventional antimicrobial agents [35]. Thus, it is possible that the tet genes of LAB strains also could be transferred to L. monocytogenes in human intestine. Further studies should be performed to provide more evidence for supporting this speculation. Besides, localizing the tet genes and investigating the conjugative plasmids in the LAB strains are also our main future work. The rest of the 16 strains failed to produce transconjugants, possibly because the resistance genes of some strains are located on chromosomes. Hummel *et al.* [9] earlier showed that the *ermB* gene, which is involved in erythromycin resistance in a *L. salivarius* strain, occurred in chromosomal DNA. There is also the possibility that in some strains, the resistance genes may be located on non-conjugative plasmids that are not competent to transfer via conjugation.

Conclusion

LAB strains tested in our study exhibited resistance to several antimicrobials that are commonly used in the clinics and veterinary hospitals. However, the data on antimicrobial resistance should be interpreted with caution because our study just evaluated a limited number of LAB strains from three types of samples, indicating that it could not be representative of the LAB from fermented dairy products in China. The distribution and transfer of antimicrobial resistance genes among LAB strains suggests that these strains may potentially act as reservoirs of resistance genes and play an active role in the transfer of resistance to humans through the food chain. Therefore, continuous surveillance of antimicrobial resistance in LAB strains from fermented dairy products is imperative and more attention should be paid to evaluating the safety of LAB strains that are used as starters or probiotics, particularly determining the presence of transferable resistance genes in these strains.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31601568), and the Key Project of Natural Science of the Education Department of Henan Province, China (16A180011).

References

- Toomey N, Bolton D, Fanning S (2010) Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res Microbiol 161: 127–135.
- Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria - A review. Int J Food Microbiol 105: 281–295.
- Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Millar BC, Xu J (2011) Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr Microbiol 62: 1081–1089.
- Sozzi T, Smiley MB (1980) Antibiotic resistances of yogurt starter cultures *Streptococcus thermophilus* and *Lactobacillus bulgaricus*. Appl Environ Microbiol 40: 862–865.
- 5. Cogan TM (1972) Susceptibility of cheese and yoghurt starter bacteria to antibiotics. Appl Environ Microbiol 23: 960-965.

- Bakry MA, Hakim AS, Nagwa SA, Zaki MS (2014) Role played by gene factor in initiaion of bacterial antibiotic resistance. Life Sci J 11: 154–160.
- Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76: 115–137.
- Toomey N, Monaghan A, Fanning S, Bolton DJ (2009) Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in a food matrix. Foodborne Pathog Dis 6: 925-933.
- Hummel AS, Hertel C, Holzapfel WH, Franz CMAP (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73: 730–739.
- Chesson A, Gropp J, Mantovani A, Roncancio C (2012) Ten years of EFSA's FEEDAP Panel and its main achievements. EFSA J 10: 1–9.
- 11. Moreno C, Romero J, Espejo RT (2002) Polymorphism in repeated 16S PRNA genes is a common property of type strains and environmental isolates of the genus *Vibrio*. Microbiology 148: 1233-1239.
- Xu FL, Guo YC, Wang HX, Fu P, Zeng HW, Li ZG, Pei XY, Liu XM (2012) PFGE genotyping and antibiotic resistance of *Lactobacillus* distributed strains in the fermented dairy products. Ann Microbiol 62: 255–262.
- O'Sullivan TF, Fitzgerald GF (1998) Comparison of *Streptococcus thermophilus* strains by pulse field gel electrophoresis of genomic DNA. FEMS Microbiol Lett 168: 213-219.
- Vernile A, Giammanco G, Spano G, Beresford TP, Fox PF, Massa S (2008) Genotypic characterization of lactic acid bacteria isolated from traditional Pecorino Siciliano cheese. Dairy Sci Technol 88: 619–629.
- Erkus O, Okuklu B, Yenidunya AF, Harsa S (2014) High genetic and phenotypic variability of Streptococcus thermophilus strains isolated from artisanal Yuruk yoghurts. LWT - Food Sci Technol 58: 348–354.
- Klare I, Konstabel C, Müller-bertling S, Huys G, Vancanneyt M, Swings J, Goossens H, Witte W (2005) Evaluation of new broth media for microdilution antibiotic susceptibility testing of *Lactobacilli, Pediococci, Lactococci,* and *Bifidobacter*. Appl Environ Microbiol 71: 8982–8986.
- Tosi L, Berruti G, Danielsen M, Wind A, Huys G, Morelli L (2007) Susceptibility of *Streptococcus thermophilus* to antibiotics. Antonie Van Leeuwenhoek 92: 21-28.
- 18. Huys G, D'Haene K, Cnockaert M, Tosi L, Danielsen M, Flórez AB, Mättö J, Axelsson L, Korhonen J, Mayrhofer S, Egervärn M (2010) Intra-and interlaboratory performances of two commercial antimicrobial susceptibility testing methods for bifidobacteria and nonenterococcal lactic acid bacteria. Antimicrob Agents Chemother 54: 2567-2574.
- Feld L, Bielak E, Hammer K, Wilcks A (2009) Characterization of a small erythromycin resistance plasmid pLFE1 from the food-isolate *Lactobacillus plantarum* M345. Plasmid 61: 159–170.
- Zhou N, Zhang JX, Fan MT, Wang J, Guo G, Wei XY (2012) Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts. J Dairy Sci 95: 4775–4783.
- Shi L, Li YL, Liang NY, Dong CY, Meng HC, Yan H (2014) Antibiotic resistance of lactic acid bacteria in yogurt from guangzhou. Modern Food Sci Technol 30: 245–250 (in Chinese).

- 22. Rojo-Bezares B, Sáenz Y, Poeta P, Zarazaga M, Ruiz-Larrea F, Torres C (2006) Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int J Food Microbiol 111: 234–240.
- Rao Thumu SC, Halami PM (2012) Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Van Leeuwenhoek 102: 541–551.
- Belletti N, Gatti M, Bottari B, Neviani E, Tabanelli G, Gardini F (2009) Antibiotic resistance of *Lactobacilli* isolated from two Italian hard cheeses. J Food Prot 72: 2162-2169.
- 25. Delgado S, Flórez AB, Mayo B (2005) Antibiotic susceptibility of *Lactobacillus* and *Bifidobacterium* species from the human gastrointestinal tract. Curr Microbiol 50: 202-207.
- 26. Klibi N, Ben Slama K, Masmoudi A, Gharbi S, Ruiz-Larrea F, Fendri C, Boudabous A, Torres C (2006) Diversity of structures carrying the *aac(6')-aph(2")* gene in clinical *Enterococcus faecalis* and *Enterococcus faecium* strains isolated in Tunisia. J Chemother 18: 353-359.
- Del Campo R, Tenorio C, Rubio C, Castillo J, Torres C, Gómez-Lus R (2000) Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant *Enterococcus* spp. in Spain. Int J Antimicrob Agents 15: 221-226.
- Jiang X, Shi L (2013) Distribution of tetracycline and trimethoprim/sulfamethoxazole resistance genes in aerobic bacteria isolated from cooked meat products in Guangzhou, China. Food Control 30: 30–34.
- Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245: 195–203.
- 30. Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G (2011) Characterization and probiotic potential of *Lactobacillus plantarum* strains isolated from cheeses. Food Microbiol 28: 1033-1040.
- 31. Morandi S, Brasca M (2012) Safety aspects, genetic diversity and technological characterisation of wild-type *Streptococcus thermophilus* strains isolated from north Italian traditional cheeses. Food Control 23: 203-209.
- Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev 67: 277-301.
- Gevers D, Huys G, Swings J (2003) In vitro conjugal transfer of tetracycline resistance from *Lactobacillus* isolates to other Gram-positive bacteria. FEMS Microbiol Lett 225: 125-130.
- 34. Ouoba LII, Lei V, Jensen LB (2008) Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: Determination and transferability of the resistance genes to other bacteria. Int J Food Microbiol 121: 217-224.
- Guerra B (2006) Phenotypic and genotypic characterization of antimicrobial resistance in *Escherichia coli* O111 isolates. J Antimicrob Chemother 57: 1210–1214.
- European Food Safety Authority (EFSA) (2008) Technical guidance - Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA J 732: 1-15.
- European Food Safety Authority (EFSA) Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10: 2740.
- European Commission (EC) (2001) Opinion of the Scientific Committee on Animal Nutrition on the criteria for assessing the safety of micro-organisms resistant to antibiotics of human

clinical and veterinary importance. Available: http://ec.europa.eu/food/fs/sc/scan/out108_en.pdf. Accessed 24 January 2003.

- 39. Danielsen M, Wind A (2003) Susceptibility of *Lactobacillus* spp. to antimicrobial agents. Int J Food Microbiol 82: 1-11.
- Katla AK, Kruse H, Johnsen G, Herikstad H (2001) Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products. Int J Food Microbiol 67: 147-152.
- Zarazaga M, Sáenz Y, Portillo A, Tenorio C, Ruiz-Larrea F, Del Campo R, Baquero F, Torres C (1999) *In vitro* activities of ketolide HMR3647, macrolides, and other antibiotics against *Lactobacillus, Leuconostoc*, and *Pediococcus* isolates. Antimicrob Agents Chemother 43: 3039-3041.
- 42. Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, Li L (2008) Plasmid-mediated quinolone resistance determinants *qnr* and

aac(6')-*Ib-cr* in extended-spectrum β -lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* in China. J Antimicrob Chemother 61: 1003-1006.

Corresponding author

Tao Yu, PhD College of Life Science and Technology, Xinxiang University Xinxiang 453003, China Tel.: +86-373-3682674 Fax: +86-373-3682674 E-mail: yutao7777@hotmail.com ORCID: 0000-0003-2030-7870

Conflict of interests: No conflict of interests is declared.