Prevalence of carbapenemases among Gram-negative bacteria in Tunisia: first report of KPC-2 producing *Acinetobacter baumannii*

Dhouha Miniaoui1,2,3,4, Olfa Dziri3,4, Yomna Ben Lamine5,6, Alaaeddin A El Salabi7, Elham O Omar8, Khould Slimene1,2,3,4, Raoudha Dziri9, Sophia Bouhalila-Besbes5,6, Linda Hadjadj1,2, Aymen Mabrouk10, Ahmed I Elbousify11, Seydina M Diene1,2, Jean-Marc Rolain1,2, Chedly Chouchani3,4,7

1 Microbes Evolution Phylogenie et Infections (MEPHI), Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, 13385 Marseille Cedex 05, France
2 IHU Méditerranée Infection, Valorisation and Transfer, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, 13385 Marseille Cedex 05, France
3 Université de Carthage, Laboratoire de Recherche des Sciences et Technologies de l’Environnement, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif 2050, Tunisie
4 Université de Carthage, Unité de Service en Commun pour la Recherche « Plateforme génomique » Institut Supérieur des Sciences et Techniques de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, PB 1003, 2050 Hammam-Lif, Tunisie
5 Université Tunis El Manar, Laboratoire de Biologie Clinique, Institut Mohamed Kassab d’Orthopédie, Rue des travailleurs Ksar Saïd La Mannouba 2010, Tunis, Tunisie
6 Université de Monastir, Faculté de Monastir, Rue Ibn Sina, 5000, Monastir, Tunisie
7 Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
8 Department of Medical Microbiology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
9 Université de Tunis El-Manar, Laboratoire des Microorganismes et Biomolécules Actives. Faculté des Sciences de Tunis. Campus Universitaire, 2098 El-Manar II, Tunisie
10 Université Tunis El Manar, Faculté de Médecine de Tunis, LR18ES39, Centre National de Greffe de Moelle Osseuse 1006, Tunis, Tunisie
11 Department of Pediatric, Faculty of Medicine, Tripoli University, Tripoli, Libya

Abstract

Introduction: The rapid evolution of the antibacterial resistance problem worldwide, including the Mediterranean countries, constitutes a real threat to public health. This study aims to characterize carbapenemase encoding genes among Gram-negative bacteria collected from some Tunisian hospitals.

Methodology: Twenty-two clinical carbapenem-resistant Gram-negative bacteria were recovered, and identified by the matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method. Antibiotic resistance was tested by disk diffusion method on Muller-Hinton Agar. The minimum inhibitory concentration (MIC) for imipenem was revealed by the E-test method. Carbapenemase encoding genes were screened by polymerase chain reaction (PCR). Genetic relatedness was performed by the pulsed field gel electrophoresis (PFGE) method.

Results: Our isolates, identified as *K. pneumoniae* (n = 7), *P. mirabilis* (n = 1), *A. baumannii* (n = 13), and *P. aeruginosa* (n = 1), presented high MIC values for imipenem. Enterobacteriales were resistant to carbapenems due to OXA-48 production. Only, four *K. pneumoniae* harbored the *blaNDM-1* gene. VIM-2 production was detected in *P. aeruginosa*. However, OXA-23 production was observed in *A. baumannii* isolates, one of which co-produced the KPC-2 enzyme that was identified for the first time in Tunisia in this species. A high genetic diversity was demonstrated by pulsed-field gel electrophoresis in *K. pneumoniae* and *A. baumannii* after XbaI and ApaI digestion respectively.

Conclusions: Our findings highlight the spread of various unrelated clones of carbapenemase-producers in some Tunisian hospitals as well as the spread of several carbapenemase types.

Key words: Gram-negative bacteria; OXA-23; NDM-1; VIM-2; KPC-2; Tunisia.

Introduction

The discovery of antibiotics and their clinical use since the 1940s have transformed modern medicine by reducing the morbidity and mortality rates related to severe infections significantly [1]. However, the large-scale antibiotic consumption and the inappropriate level of prescribing antibiotics led to the emergence and the dissemination of multdrug resistant bacteria that became a global crisis [2]. The widespread existence of multdrug-resistant bacterial infections around the world is an alarming risk and poses a real threat. Multidrug-resistant bacterial infections have not only...
led to the increase of mortality and morbidity rates, but also the cost of treatment [3]. Furthermore, the most worrisome infections that occurred in hospitals and the community, were caused by multidrug-resistant Gram-negative species, specifically Acinetobacter baumannii, Enterobacterales and Pseudomonas aeruginosa [2].

These species are opportunistic pathogenic bacteria and responsible for several serious infections notably pneumonia, bloodstream and urinary tract infections, mainly in immunocompromised patients [4].

Carbapenems are considered as one of the last resort antibiotics used for the treatment of severe infections owing to their broad antibacterial spectrum of activity towards almost all β-lactams [5]. Despite its effectiveness, the crisis has been dramatically worsened by the emergence and spread of carbapenem resistant isolates which are often linked to carbapenemase production [6]. In fact, a wide variety of these enzymes has been described throughout the world, noting a different prevalence in each region, and recording epidemic, endemic or sporadic transmission of each enzyme [7]. The most frequently reported carbapenemase types include; Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), Verona integron-encoded metallo-β-lactamase (VIM), imipenemase metallo-β-lactamase (IMP), and Oxacillinase (OXA-48) [7]. In several Mediterranean countries including Tunisia, resistance to carbapenems was closely related mainly by the production of OXA-48 enzyme, in addition to the detection of other carbapenemase types, including metallo-beta-lactamases [8,9]. Nevertheless, class A carbapenemases are still uncommon in our country. The, KPC enzyme has been recently detected only among E. coli and K. pneumoniae clinical isolates [10,11].

This work aimed to identify carbapenemase encoding genes among multidrug-resistant Gram-negative bacteria isolated from patients hospitalized in two northern Tunisian hospitals. This study reported for the first time KPC-2 producing A. baumannii in Tunisia and also demonstrated the detection of several carbapenemases, including NDM-1 and OXA-48 among Enterobacterales, and VIM-2 and OXA-23 among non-fermentative Gram-negative bacteria.

Methodology

Bacterial isolates

Twenty-two carbapenem resistant Gram-negative isolates were recovered from several sources (urine, bone, pus, fistula, sepsis) from patients hospitalized in different departments in two northern Tunisian hospitals: Mohamed Kassab Orthopedics Institute and Ben Arous Regional Hospital, as described in Table 1 and Table 2. The isolates were then purified by streaking the entire surface of the brain heart infusion agar plate. They were identified using biochemical tests (API 20E, Biomérieux, Marcy-l’Etoile, France) and by mass spectrometry using the matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometer (Microflex, Bruker Daltonic, Bremen, Germany).

Phenotypic characterization of antibiotic resistance

Resistance to antibiotics were investigated using the disk diffusion method on Mueller-Hinton agar medium. A total of fifteen antibiotics were tested for both fermentative and non-fermentative Gram-negative bacteria and nine similar antibiotics were used [piperacillin-tazobactam (TZP), cefepime (FEP), imipenem (IMP), ciprofloxacin (CIP), doxycycline

<table>
<thead>
<tr>
<th>Table 1. Phenotypic and molecular characterization of carbapenem-resistant fermenter Gram-negative bacteria.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Kp 13</td>
</tr>
<tr>
<td>Kp 15</td>
</tr>
<tr>
<td>Kp 16</td>
</tr>
<tr>
<td>Kp 17</td>
</tr>
<tr>
<td>Kp 26</td>
</tr>
<tr>
<td>Kp 34</td>
</tr>
<tr>
<td>Kp 35</td>
</tr>
<tr>
<td>Pm 14</td>
</tr>
</tbody>
</table>

Kp: Klebsiella pneumoniae; Pm: Proteus mirabilis; OIMK: Orthopedic Institute Mohamed KASSAB; RHB: Regional Hospital of Ben Arous; OXA-48: Oxacillinase; NDM: New Delhi metallo-β-lactamase; AX: ampicillin; AMC: amoxicillin + clavulanic acid; TZP: piperacillin + tazobactam; FEP: cefepime; CRO: ceftriaxone; CIP: ciprofloxacin; ETP: ertapenem; IMP: imipenem; GEN: gentamicin; F: nitrofurantoin; KM: kanamycin; DO: doripenem.
(DO), fosfomycin (FF), nitrofurantoin (F), trimethoprim-sulfamethoxazole (SXT), amikacin (AK) while six different antibiotics [amoxicillin (AX), amoxicillin + clavulanic acid (AMC), cephalexin (KF), ceftriaxone (CRO), ertapenem (ETP), gentamicin (GEN)] and [ticarcillin (TIC), ticarcillin + clavulanic acid (TCC), meropenem (MEM), ceftazidime (CAZ), rifampicin (RA), tobramycin (TOB)] were tested for fermentative and non-fermentative Gram-negative bacteria respectively. Besides, the minimum inhibitory concentrations (MIC) of imipenem were investigated by the E-test method. The results were analyzed according to the guidelines of the Antibiogram Committee of the French Society of Microbiology (CA-SFM / EUCAST 2018, http://www.sfm-microbiologic.org/).

Molecular characterization of carbapenem resistance genes

Molecular characterization of carbapenemases encoding-genes was performed by polymerase chain reaction (PCR) using specific primers for the amplification of genes coding for class A (bla_{ADC} and bla_{GES}) [12], class B (bla_{NDM}, bla_{VIM}, and bla_{IMP}) [13]; and class D (bla_{OXA-23}, bla_{OXA-24} and bla_{OXA-48}) as previously described [14]. The amplicons were then sequenced to identify the corresponding variants.

Screening for clonal relationship by pulsed-field gel electrophoresis

To investigate the genetic relatedness among carbapenem-resistant K. pneumoniae and A. baumannii isolates, we have carried out the pulsed-field gel electrophoresis (PFGE) using XbaI and ApaI restriction enzymes respectively. The restriction patterns obtained were analyzed by the FPQuest Version 5 software using UPGMA (Unweighted Pair Group Method with Arithmetic mean) algorithm.

Results

Bacterial isolates: origin and susceptibility testing

A total of 22 carbapenem-resistant Gram-negative clinical isolates were collected from two hospitals, Mohamed Kassab Orthopedics institute (n = 18) and Ben Arous Regional Hospital (n = 4) in northern Tunisia, and identified as follows: *K. pneumoniae* (n = 7); *P. mirabilis* (n = 1); *A. baumannii* (n = 13); and *P. aeruginosa* (n = 1). The majority of these isolates were recovered from septic wards (n = 10), followed by intensive care units (n = 7), and traumatology wards (n = 5) (Table 1 and Table 2). The results showed that all

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Pulsotypes</th>
<th>Hospitals</th>
<th>Wards</th>
<th>Origins</th>
<th>Sampling dates</th>
<th>Phenotypic resistance</th>
<th>MICs (mg/L)</th>
<th>Carbenpemases types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab 1</td>
<td>J1</td>
<td>OIMK</td>
<td>ICU</td>
<td>Urine</td>
<td>08/06/2015</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; DO; F; SXT; FF; CAZ; FEP</td>
<td>> 32</td>
<td>-</td>
</tr>
<tr>
<td>Ab 2</td>
<td>C1</td>
<td>OIMK</td>
<td>ICU</td>
<td>Blood</td>
<td>03/04/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; F; SXT; FF; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 3</td>
<td>C2</td>
<td>OIMK</td>
<td>ICU</td>
<td>Blood</td>
<td>27/04/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; AK; RA; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 4</td>
<td>F</td>
<td>OIMK</td>
<td>ICU</td>
<td>Trachea</td>
<td>03/05/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; RA; DO; F; SXT; FF; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 5</td>
<td>D</td>
<td>OIMK</td>
<td>Septic</td>
<td>Articular fluid</td>
<td>17/06/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; RA; F; SXT; FF; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 6</td>
<td>B</td>
<td>OIMK</td>
<td>Septic</td>
<td>Prosthesis</td>
<td>03/08/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 7</td>
<td>A1</td>
<td>OIMK</td>
<td>Septic</td>
<td>Blood</td>
<td>05/08/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; RA; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 8</td>
<td>E1</td>
<td>OIMK</td>
<td>Septic</td>
<td>Skeleton</td>
<td>10/08/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; DO; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 9</td>
<td>E2</td>
<td>OIMK</td>
<td>ICU</td>
<td>Blood</td>
<td>11/08/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; DO; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 10</td>
<td>J2</td>
<td>OIMK</td>
<td>ICU</td>
<td>Urine</td>
<td>29/08/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; DO; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 11</td>
<td>H</td>
<td>OIMK</td>
<td>Septic</td>
<td>Fistula</td>
<td>04/05/2017</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; DO; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 12</td>
<td>A1</td>
<td>OIMK</td>
<td>Septic</td>
<td>Surgical wound</td>
<td>17/03/2018</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; DO; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23</td>
</tr>
<tr>
<td>Ab 24</td>
<td>I</td>
<td>RHB</td>
<td>Traumatology</td>
<td>Urine</td>
<td>07/04/2018</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; AK; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>OXA-23; KPC-2</td>
</tr>
<tr>
<td>Ps 20</td>
<td>-</td>
<td>OIMK</td>
<td>ICU</td>
<td>Trachea</td>
<td>12/05/2018</td>
<td>TIC; TCC; TZP; MEM; IMP; CIP; TOB; RA; DO; F; SXT; CAZ; FEP</td>
<td>> 32</td>
<td>VIM-2</td>
</tr>
</tbody>
</table>

Ab: *Acinetobacter baumannii*; Ps: *Pseudomonas aeruginosa* OIMK: Orthopedic Institute Mohamed KASSAB; RHB: Regional Hospital of Ben Arous; ICU: intensive care Unit; TIC: ticarcillin; TCC: ticarcillin-clavulanic acid; TZP: piperacillin-tazobactam; MEM: meropenem; IMP: imipenem; CIP: ciprofloxacin; TOB: tobramycin; AK: amikacin; DO: doripenem; F: fosfomycin; SXT: trimethoprim-sulfamethoxazole; FF: fosfomycin; CAZ: ceftazidime; FEP: cefepime; OXA: Oxacillinase; KPC: Klebsiella pneumoniae carbapenemase.
carbapenem-resistant isolates collected from intensive care units belonged to the non-fermentative Gram-negative bacteria group.

As described in Tables 1 and 2, the antibiotic susceptibility testing results showed that all isolates were resistant to almost all tested antibiotics, namely β-lactams, fluoroquinolones, aminoglycosides and tetracycline, which confirms the multidrug resistant pattern of these isolates. On the other hand, high MIC values of IMP were observed among the majority of our isolates (MIC > 32 mg/L), thus showing a high imipenem resistance level.

Molecular characterization of carbapenem resistance encoding-genes

PCR results showed that 12 A. baumannii isolates harbored \textit{blaOXA-23} gene, and one of them harbored \textit{blaKPC-2} (Table 1 and Table 2). However, \textit{blaVIM-2} was detected among one \textit{P. aeruginosa}. Furthermore, \textit{blaOXA-48} was detected in all \textit{K. pneumoniae} and one \textit{Proteus mirabilis}, noting a co-production of this enzyme with NDM-1 metallo-β-lactamase in 4 \textit{K. pneumoniae} isolates. In addition, we noted the absence of other carbapenemase encoding genes, namely GES, OXA-24 and IMP.

Figure 1. Dendrogram generated by UPGMA algorithm FPQuest software showing the PFGE (Pulsed Field Gel Electrophoresis) patterns of the 7 \textit{K. pneumoniae} genomic DNA after digestion by XbaI enzyme.

Figure 2. Dendrogram generated by UPGMA algorithm FPQuest software showing the PFGE (Pulsed Field Gel Electrophoresis) patterns of the 13 A. Baumannii genomic DNA after digestion by ApaI enzyme.

Genetic relatedness of carbapenem-resistant isolates

A high genetic diversity was observed among our carbapenem-resistant isolates. In fact, the analysis of PFGE patterns using the UPGMA algorithm showed a genetic relatedness less than 60%, along with seven different pulsotypes of \textit{K. pneumoniae} (Figure 1), and twelve different pulsotypes of \textit{A. baumannii} (Figure 2). Thus, only two \textit{A. baumannii} isolates, Ab7 and Ab12, appeared to be clonal with 100% identity (Figure 2).

Discussion

The increasing prevalence of carbapenem resistant Gram-negative species is a growing problem in hospitals, and constitutes a real threat to public health worldwide [15,16]. Indeed, therapeutic options for carbapenem-resistant bacterial infections have become very limited, leading to prolonged hospitalization as well as the increasing level of mortality and morbidity [17]. A recent study has demonstrated that carbapenem resistant Gram-negative species differed by infection sites. Respiratory tract infections are commonly caused by \textit{P. aeruginosa} and \textit{A. baumannii}; while, the urinary tract infections are caused mainly by Enterobacterales, especially the most clinically relevant species, \textit{E. coli} and \textit{K. pneumoniae} [17]. In the present report, twenty-two carbapenem resistant Gram-negative species were detected and isolated from various infection sites,
noting A. baumannii, P. aeruginosa, K. pneumoniae and P. mirabilis. Carbapenemase production constitutes the main mechanism conferring resistance to this class of antibiotics [6]. In fact, several carbapenemase variants have been identified in various species throughout the world (> 350) [35] recording a heterogeneous geographic distribution.

Indeed, several studies reported a high prevalence of KPC producing isolates in Greece, Italy, and Latin America, where they frequently belonged to the Enterobacterales family and most commonly K. pneumoniae [18-20]. In Tunisia, this enzyme is still uncommon. It was recently detected among E. coli and K. pneumoniae clinical isolates in the north of Tunisia [10,11]. Thus, the detection of KPC producing A. baumannii in this northern regional hospital caught our attention while it was not hitherto recorded in our country.

Herein, we revealed for the first time the occurrence of KPC-2 producing A. baumannii in Tunisia. Moreover, the presence of KPC enzymes in A. baumannii species was first described in Puerto Rico in 2009 [21]. To our knowledge, it was limited to this region [19] and it was scarcely reported in other countries such as Portugal where it was recently isolated [22]. Resistance to carbapenems among A. baumannii was mainly attributed to the OXA-23 carbapenemase production. This class D carbapenemase was detected for the first time in the world in a clinical A. baumannii isolated in 1985 in Scotland, and then it was globally disseminated [23,24]. In Tunisia, the OXA-23 positive carbapenem resistant A. baumannii was reported for the first time in 2008 in a coastal city [25]. To the best of our knowledge, it has been recently demonstrated that, the existence of blaOXA-23-like was closely related to carbapenem resistance phenotype. Indeed, a previous observational study revealed that carbapenem resistance is closely related to the expression of blaOXA-23 as well as the contribution of the blaTEM gene [26]. In the present report, the blaOXA-23 gene was detected in all our carbapenem-resistant A. baumannii except one that could be resistant to carbapenems through the production of the naturally occurring OXA-51-like enzyme or by porin loss [27,28]. This non-carbapenemase-mediated mechanism was frequently observed among non-fermentative Gram-negative bacteria, especially P. aeruginosa. Indeed, loss of function or decrease in expression of OprD porins contribute significantly to carbapenem resistance among this species [29]. In this study, the P. aeruginosa isolate was resistant to carbapenem by VIM-2 metallo-β-lactamase production. Since its first description in Tunisia, this enzyme was frequently reported in several Tunisian hospitals, and it was mainly detected in P. aeruginosa species [30,31].

Two carbapenemase types were detected among fermentative carbapenem-resistant Gram-negative isolates. NDM-1 metallo-β-lactamase type was detected among the four K. pneumoniae in association with OXA-48 enzyme. This carbapenemase combination was described in Tunisia since 2013, the date of the first report of NDM-1 in Tunisia [32]. This was later disseminated in Tunisian hospitals and was described in various species, but it was not detected previously in these two hospitals. In addition, we have noted that all our Enterobacterales isolates harbored the OXA-48 encoding genes that was regarded as endemic in Mediterranean countries including Tunisia [8,33]. In spite of this, the detection of this enzyme in P. mirabilis was uncommon worldwide as well as in Tunisia. In fact, there is limited data describing OXA-48 producing P. mirabilis isolate. To our knowledge, only one OXA-48 producing P. mirabilis isolate was detected in Tunisia to date, and it was recently isolated from a southern hospital [34]. Additionally, our data reported for the first time the detection of OXA-48 producing P. mirabilis in a northern Tunisian hospital.

Conclusions

Overall, our findings highlight the spread of various unrelated clones of carbapenemase-positive isolates in Tunisian hospitals, as well as the dissemination of several carbapenemases. Our study is the first description of KPC-2 producing A. baumannii in Tunisia and the emergence of a clinical P. mirabilis isolate harboring the blaOXA-48 gene in a northern Tunisian hospital. Thus, controlling antibiotic resistance in our healthcare settings should be one of the top priorities to reduce the diffusion of resistance in bacteria, especially to the last resort antibiotics.

Acknowledgements

The authors thank the staff of the laboratory of the regional hospital of Ben Arous as well as the laboratory of Mohamed Kassab Institute of Orthopedics for their helpful assistance to obtain the clinical isolates.

Funding

This work was partly funded by IHU Méditerranée Infection, Aix-Marseille-University in France. This work was also supported by the Tunisian Ministry of Higher Education and Scientific Research and Campus France under the PHC-Utique project (Code 18G0819) which offered a scholarship.
to Miss. Dhouha Miniaoui to attend the IHU Méditerranée Infection, Aix-Marseille-University in France.

References

27. Brown S, Young H, Amyes S (2005) Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from

Corresponding author
Professor Chedly Chouchani, PhD
Laboratoire de Recherche Sciences et Technologies de l’Environnement, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Université de Carthage, Tunisie.
Tel: +21694114443
Fax: +21679325333
E-mail: chedly.chouchani@isste.u-carthage.tn

Conflict of interests: No conflict of interests is declared.