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Abstract 
Introduction: One of the greatest causes of morbidity and mortality in the Sub-Saharan Africa, particularly among young adults, is 

HIV/AIDS. Many mathematical models have been suggested for describing the epidemiology as well as the epidemiological consequences of 

the epidemic. A review of some these models would aid researchers in applying them to better understand and control the incidence and 

distribution of the disease in their countries.  

Methodology: This study reviews some of the models proposed by various authors for describing the epidemiology as well as the 

epidemiological consequences of the HIV/AIDS epidemic and how some of them could be modified to suit the situations in other countries. 

We also discuss the limitations and the place of such models in the fight against the HIV epidemic.  

Results: A clear explanation of the premises and assumptions on which the models were based was reached by reviewing the models across 

different scenarios.  

Conclusion: Mathematical models have been very useful in HIV research, particularly for empirical studies on people living with HIV/AIDS 

(PLWHA). These models make predictions that generate questions of social and ethical interest.  
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Introduction 

HIV transmission models aim to describe the 

dynamics of the spread of the disease by a system of 

equations in which the transition rates between 

defined states are specified quantitatively [1]. These 

models are complex and incorporate biological and 

behavioural variables which describe HIV 

transmission and its natural history to simulate the 

infection and disease process; therefore they could be 

used to reliably project HIV infection rates and AIDS 

cases if the model is shown to be valid and the data 

sets used are accurate [2]. Early examples of these 

types of models were reviewed by Isham [3]. 

This paper reviews various mathematical models 

already proposed in the context of HIV transmission 

and the AIDS epidemic. Emphasis is placed on the 

various forms of HIV transmission models and the 

assumptions under which the models were based. We 

also trace how transmission models evolved from the 

simplest population of homosexuals with 

homogeneity with respect to susceptibility, 

infectiousness and sexual mixing. 

Approaches to HIV/AIDS modeling 

Four different types of basic modeling 

approaches can be used to develop mathematical 

models for HIV/AIDS and some other infectious 

diseases: The deterministic models, the stochastic 

models, the statistical models (direct extrapolation 

and the state back-calculation method), and the 

Space-Kalman filter models [4].  

This study focuses on deterministic models. This 

approach to modeling HIV/AIDS uses HIV 

transmission dynamics models which include the 

progression to AIDS and often have the population 

divided into compartments consisting of those who 

are susceptible, in each of the infection stages, or in 

the AIDS phase. In deterministic transmission 

models, the movement between these compartments 

by becoming infected, progressing to the next stage 

or AIDS, migrating, or dying is specified by systems 

of difference or differential equations [5]. 

Dynamic models and computer simulations are 

experimental tools for comparing regions or risk 

groups, testing theories, assessing quantitative 
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conjectures, and answering questions [5]. They can 

also be used to theoretically evaluate, compare or 

optimize various detection, prevention, intervention, 

or control programs. Determistic models assume that 

all response variables, such as the numbers of 

susceptible people, infected people, and AIDS cases 

in the HIV epidemics, are deterministic functions of 

time ignoring completely the randomness of these 

variables and the randomness of all risk factors.  The 

equations used in deterministic models are derived by 

taking into account the biological and the 

epidemiological as well as the clinical aspects of the 

HIV epidemics.  By analyzing these equations, one 

may then study the behaviour and progression of the 

HIV epidemics as time progresses [4]. 

Some HIV transmission dynamics models are 

stochastic, with probabilities of moving to the next 

stage at each time step. Stochastic models assume 

that the response variables are a family of random 

variables indexed by time so that the HIV epidemic is 

a stochastic process [4]. Since nature is basically 

stochastic and many variables are subject to 

stochastic variations, stochastic models are more 

realistic than deterministic models [4]. However, the 

mathematics in stochastic models is usually more 

complicated and difficult than those involved in 

deterministic models.  Under some very special 

conditions, results of the deterministic models may 

provide a close approximation to the results of the 

mean number of the stochastic models. 

 

Deterministic and stochastic models 

In HIV modeling for instance, deterministic 

models assume that response variables such as the 

numbers of susceptible individuals at time t , )(tS , 

infected people at time t , )(tI and those developing 

AIDS at time t , )(tA are deterministic functions of 

time. The model takes no account of the randomness 

of these variables or that of all risk factors [4]. 

Sometimes called compartmental models, 

deterministic models attempt to approximate what 

happens on the average at the population scale and 

therefore requires less data. Deterministic models are 

often described by a system of differences or 

differential or integral equations which are derived by 

taking into account the biological, epidemiological 

and clinical aspects of the disease. 

Stochastic models, on the other hand, assume that 

the response variables are a family of random 

variables indexed by time so that the epidemic is 

basically a stochastic process [4]. Stochastic 

epidemic models are useful for small populations, 

possibly of isolated communities in which the known 

heterogeneity inherent in the population is of 

importance. As a result, the mathematics in stochastic 

models are usually more complicated and difficult 

than those involved in deterministic models [4] and 

do not lend easy explanation to the dynamics of the 

epidemic. 

Deterministic models often (under some 

conditions) provide approximation to the behaviour 

of the stochastic mean and are consequently referred 

to as special cases of stochastic models. 

Epidemiologists find it more convenient to use 

compartmental models (see Figures 1 and 2) in which 

individuals are categorized into different disease 

progress stages (sub-groups or compartments). In 

HIV/AIDS, for instance, individuals are classified 

into (without complicated thought) three 

compartments designated as susceptible, infectious 

and recovered/immunized (SIR), which in the case of 

HIV is the group of those developing AIDS at a 

given time [4]. 

 

Fundamentals of deterministic epidemic transmission 

models; application to HIV/AIDS infection 

Haberman [6] presented an excellent review of 

the basic approach to deterministic epidemic 

transmission models. We begin with simple models 

for the spread of HIV infection within a closed group 

of male homosexuals. The model is then made more 

realistic and complex by allowing for immunity from 

infection; allowing for an open population with 

migration and deaths being incorporated; allowing 

for variations in the progression of the infection ; and 

for variations in the population according to risk 

behaviour or other important characteristics, such as 

geographic region. It would have the effect of 

overstating the number of HIV infections, because 

the model would fail to take into account the fact 

that, to some degree, the epidemic may be limited or 

contained within a subgroup. 

The models may be adapted to deal with 

heterosexual spread in a two-sex population and with 

needle sharing associated with IV-drug abuse [6]. We 

start with a simple model for the spread of HIV 

infection within a closed male homosexual 

community and assume that the total population has a 

fixed size, n. 
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We use the following notation: 

t = time 

)(tS = number of susceptible individuals at time t 

)(tI = number of infected individuals without AIDS 

at time t 

)(tA = number of AIDS cases at time t 

)(tAC = accumulated number of AIDS cases up to 

time t 

 = rate of developing AIDS for infected individuals 

 = probability of infection from a sexual contact 

with an infected individual. 

C = average number of contacts between sexual 

partners, and 

r = average number of new sexual partners per year 

 

Suppose that susceptibles become infected 

through sexual contacts with partners, whom they 

choose randomly at a fixed rate from the community. 

If )(tN is the number at risk of being chosen in this 

way, then two extreme values for )(tN would be

ntN )( , the whole population, or

)()()( tStItN  , if each individual who develops 

AIDS is withdrawn from the class of infectives. We 

shall take the latter case as representing a reasonable 

approximation to reality; then a deterministic 

approximation to the underlying stochastic process 

governing the behaviour of S(t), I(t) and A(t) is 

provided by the following set of ordinary differential 

equations: 
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Where 
)(
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)(

tN

tI
Crt    and )()()( tItStN  , 

can be interpreted as the parameter for an 

exponentially distributed random variable 

representing the lengths of time that infected 

individuals remain infective. The behaviour of the 

epidemic in the early stages when )()( tNtS  is 

given by ))exp(()0()( tCrItI   and dt , the 

doubling time is given by  

)(

2log
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Cr
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Thus an infective in an otherwise wholly susceptible 

population will pass on the infection to an average of  
 



Cr
R   susceptibles. 

 

R is the reproductive rate of the infection and must 

satisfy R > 1 if an epidemic is to develop. 

A more general model separates the infectives I 

into two classes, according to whether or not they 

ultimately develop AIDS. This allows for the 

possibility that the mean incubation period for AIDS 
1

1

 is different from the mean infectious period 

among those seropositives who do not develop AIDS   
1

2

 . In the extreme case 02  , so that the 

seropositives remain infectious indefinitely, as 

investigated by Bailey and Estreichar [7]. We now 

modify the notation, so that I1, I2, A1 , A2 denote the 

numbers of infected individuals who will ultimately 

develop AIDS; the number of infectives who do not 

develop AIDS; the number of AIDS cases; and the 

number of non-infectious seropositives, respectively. 

Then the ordinary differential equations become 
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Where )()()( 21 tItItI   is the total number of 

infectives at time t,  is the probability that an 

individual enters the class of potential AIDS patients 

on withdrawal from the class of infectives, and a 

suitable choice for )(tN  in the definition of )(t  

might be as an equation (1), or with 
 

)()()()()()( 1221 tAntAtItItStN   4 
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If 21    then equation 2.49 reduces to 2.48, and for 

this model, the overall reproductive rate of HIV 

infection is given by  
 


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


R   5 

 

The model represented by equation (8) has been 

studied numerically by several authors [9-11]. 

 

Allowing for migration in HIV transmission models  

So far, the model has been applied to a closed 

population. In order to apply the model to time 

periods beyond the initial stages of the spread of 

infection, it is necessary to allow immigration to the 

class of susceptibles and deaths from all classes. 

Suppose: 

)(tm  = rate of migration to the class of susceptibles 

at time t 

  = death rate of individuals without AIDS (in the 

form of the force of mortality) 

  = extra death rate of individuals with AIDS (with

  ).  

Then the differential equations 2.49 are modified as 

follows: 
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where )()()()()()( 2121 tAtAtItItStN   in 

the definition of )(t . This model has been presented 

and analyzed by many authors for the spread of 

various sexually transmitted diseases, and has been 

studied numerically by Anderson and May (1986) [9] 

and by Anderson et al. (1986) [10] using the simple 

form 21    and

)()()()()()( 2121 tAtAtItItStN  . This 

model has also been studied by Hyman and Stanley 

[12], using the form 0Sm   where 0S is the 

population size before the AIDS virus was introduced 

(so that there is a balance between flows into and out 

of the population) and 1  (so that 0)(2 tI  and

0)(2 tA ). Similarly, Thompson [13] explores 

numerically 1  and mtm )( , but does not test 

the model for goodness of fit against observed data. 

An analytic solution has been found by Birkhead 

[14] under certain further restrictive assumptions. 

First, it is assumed that )()()( 1 tItStN  , so that 

not only the AIDS patient but also the non-infectious 

seropositives are excluded. Secondly, it is assumed 

that the immigration of susceptibles is at a rate 

proportional to )(tN i.e. )(0 tNmm  , rather than 

being constant. Neither modification will be 

significant in the initial stages of the epidemic, but as 

the epidemic progresses it is plausible that changing 

behaviour could result in a reduced level of 

immigration into the homogeneously mixing male 

homosexual community being modeled. Then, 

explicit analytic formulae for )(tI and )(tN  can be 

derived. 

Birkhead [14] used a different interaction of  : a 

proportion of the seropositives are assumed to 

develop full-blown AIDS and then cease sexual 

mixing, with the rest remaining infective and 

sexually active. Thus, the equation for )(1 tI becomes 
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Equation (3) can be modified to model purely 

heterosexual spreading, by splitting the population 

according to sex and including partnership balance 

relationships. These balances are necessary to take 

account of situations where there are not enough 

women, so that men cannot have as many partners as 

they might like, and vice versa. 

Other modifications have been introduced to the 

above basic model by Van Druten et al. [15], to allow 
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for the fact that, at the start of the spread of infection 

in the population, few of its members are at risk and 

that the size of the population at risk should, 

therefore, be a dynamic variable. The effect of 

modeling the risk population in this way is to slow 

down the initial exponential rate of increase in the 

number of infectives (relative to the models described 

earlier), with most effect when the average number of 

sexual partners per infective is small (this parameter 

is proportional both to r  and the mean duration of a 

partnership and, for a fixed value of r , would be 

small when partnerships are short-lived. 

 

Deterministic transmission models for HIV infections 

Cooper [16] considered the spread of HIV within 

a population in Sub-Saharan Africa. Starting with a 

very simple model for homosexually transmitted 

HIV, Cooper divided the total host population into 

five categories of individuals: susceptibles, )(tX ; 

infectives of types 1 (who go onto develop AIDS) 

and 2 (who eventually recover), )(1 tY and )(2 tY  

respectively; those with clinical AIDS, )(tA ; and 

recovered non infectious individuals, )(tZ . Out of 

those infected, a proportion f  are of type 1 and 

develop AIDS at a rate of 1v ; the remaining fraction 

f1  are of type 2 and move into the non infections 

state at a rate of 2v . The final parameters model 

births and deaths: a constant rate B  of new 

susceptibles enter the population, there is a constant 

mortality rate , and an additional death rate for 

those with clinical AIDS given by . Equation (8) 

below describes this model: 
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The force of infections , in these equations, is given 

by NYYc /)( 2211   .                        

Here k is the probability that infection will be 

acquired from an infected sexual partner of type k, 

and NYk / is the probability that a randomly chosen 

partner will be an infective of type

)( 21 ZAYYXNk  . For simplicity, the 

transmission probability is per partnership rather than 

per sexual act. Again, it was also assumed that there 

is homogeneity in the sexual habits within the 

population. 

In practically any community of non trivial size, 

there is a large variation in sexual habits, with 

different individuals having different numbers of 

sexual partners at any given time. Using subscript i   

to denote the number of susceptibles having an 

average i  sexual partners per unit time (we split the 

population into a few discrete classes of sexual 

activity rather than have a more continuous range), 

equation (8) then becomes 
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The force of infection for susceptibles in the ith  

group is assumed to be proportional to the average 

number of partners per unit time i , so  ii   where 

  is the probability that a randomly chosen partner 

will produce infection and is given by  
 


 



i i
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iN
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  10 

 

  depends on the probability that a given partner is 

infectious, and the probability k  that an infectious 

partners infects a susceptible. The factors of i  in the 

expression for   weight potential partners by their 

degree of sexual activity, since a highly promiscuous 

individual is more likely to be available as a potential 

partner. 
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Deterministic models for heterosexual transmission 

of HIV infections 

One of the unique features of a heterosexual 

transmission is the fact that the population consists of 

two sets of individuals, male and female, with the 

male being infected by an infectious female and vice 

versa. Cooper [16] extended the model in equation 

(8) to incorporate a simple model of HIV 

transmission within a closed heterosexual population 

that is heterogeneous with respect to sexual activity 

rates. Denoting terms relating to females with a 

prime, leaving the activity groups as before, and 

assuming that the progress of the disease is the same 

in males and females (both use the same parameter v
), the model is given as 

 



























YvX
dt

Yd

X
dt

Xd

vYX
dt

dY

X
dt

dX

ii
i

i
i

iii
i

i
i









 11 

 

As with the homosexual model,  ii   where   

represents the probability that any (randomly chosen) 

female partner will infect a susceptible male, and vice 

versa for . Analogously to the homosexual case, 

noting that males are only infected by females and 

females by males, these probabilities are given by  
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One of the major criticisms against this type of 

model (and also the earlier ones) is that it assumes no 

correlation between individuals in the various classes 

of sexual activities in their search for partners. In 

reality we would expect those more promiscuous 

individuals to seek out partners of like mind, and vice 

versa [16]. 

The simple model in equation (11) lacks several 

features of the earlier homosexual models, namely 

births, deaths, and a class of individuals with AIDS. 

Cooper [16] extended this model to include births, 

deaths and a class of individuals with AIDS. The 

equations describing the extended model are shown 

below: 
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As before, variables with a prime denote females, and 

those without denote males. 

Garnett and Anderson [17] presented a 

description of the development and analysis of a 

mathematical model of the spread and demographic 

impact of HIV in heterosexual communities in 

developing countries. The model extended previous 

work in this area by the representation of patterns of 

mixing between and within different age and sexual 

activity classes in a two-sex structure. Summary 

parameters were derived to represent different mixing 

patterns, ranging from assortative via random to 

disassortative, as were methods to ensure that 

particular mixing patterns between different age and 

sexual classes (stratified on the basis of rates of 

sexual partner change) met constraints that balanced 

the supply and demand for sexual partners, as AIDS-

induced mortality influences the demographic 

structure of a population. 

The model consists of a system of partial 

differential equations to describe changes in the 

numbers of susceptibles ( X ) of infected individuals 

(Y ), and of individuals with AIDS ( A ) of both 

sexes, with respect to time t  and age a . It has the 

following structure: 
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where ),( taX kl denotes the number of susceptible 

individuals of sex k , sexual activity group l , and age 

a  at time t . Sexual activity groups are defined on 

the basis of rates of sexual partner change per unit of 

time (n in total). Once infected, individuals pass via 

three states )32,1( ands  to denote disease 

progression prior to developing AIDS. This division 

of the infected but non AIDS variable Y into three 

categories is made to mirror variable infectiousness 

over the incubation period of AIDS [8], with patients 

moving from a state of high infectiousness, via a state 

of low infectiousness, back  to a state of high 

infectiousness just prior to the development of AIDS. 

The other subscript labels on ),( taYskl  are as defined 

for ),( taX kl  and they also apply for the AIDS 

compartment, ),( taAkl . The total population at time 

t , )(tN is given by 
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Garnett and Anderson [17] assumed that the flow 

of individuals from Y  to A  is based on the 

assumption that all who acquire infection eventually 

develop AIDS. It is possible that some small fraction 

of infected individuals may not progress to AIDS 

within their natural lifespan but the magnitude of this 

proportion is unknown.  

Susceptibles acquire HIV infection at sex-, sexual 

activity group-, age- and time-dependent rates and 

enter the first stage of infection ),( taYskl  where 

1s . They pass through the three stages of infection 

at a stage- and age-dependent rate )(as . Individuals 

are removed from the population at an age- and sex-

dependent rate per capital mortality rate )(ak  (per 

year), and those who have AIDS also have an 

additional age-dependent mortality rate )(a (per 

year). 

Further details and analyses of these models are 

obtainable from Garnett and Anderson [17]. The 

principal conclusion of the study was that the pattern 

of mixing between age and sexual activity classes, 

combined with the assumptions made to balance 

supply and demand between the sexes, have a major 

influence on the predicted pattern of HIV spread and 

the demographic impact of AIDS. 

A data-based mathematical model to access the 

epidemiological consequences of heterosexual, 

intravenous drug use and perinatal transmission in 

New York City was suggested by Blower et al. [18]. 

The results demonstrated the significance of the 

dynamic interaction. Scenario analysis of the model 

was used to suggest a new explanation for the 

stabilization of the seroprevalence level that has been 

observed in the New York City intravenous drug use 

community; the proposed explanation does not rely 

upon any intravenous drug use or sexual behavioural 

changes. Gender specific risks of heterosexual 

transmission in intravenous drug users were also 

explored by scenario analysis. The model was used to 

predict future numbers of adult and paediatric AIDS 

cases; a sensitivity analysis of the model showed that 

the confidence intervals on these estimates were 

extremely wide. This prediction variability was due 

to the uncertainty in estimating the values of the 

thirty variables of the model. However, the sensitivity 

analysis reveals that only a few key variables were 

significant in contributing to the AIDS case 

prediction variability. Partial rank correlation 

coefficients were calculated and used to identify and 

to rank the importance of these key variables. 

The model divided the population of women into 

the categories of susceptible individuals, infected 

individuals, and individuals with clinical AIDS, with 

each category divided into five subgroups. The rate 

of change of the population sizes of the five 

subgroups of susceptible women are given below: 
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where the variables fffff XandXXXX 54321 ,,,  

are numbers of susceptible women who have the 

single intravenous drug use (IVDU) risk factor of 

sharing needles with strangers (stranger user); those 

who have the single IDVU risk factors of sharing 

needles with friends (buddy user); those who have 

dual risk factors (sexually active stranger users); 

those who have dual risk factors (sexually active 

buddy users); and those who have the single risk 

factor through heterosexual transmission 

respectively; and where f  is the rate of sharing 

needles per female; i  is the female stranger user 

intravenous drug use transmission probability; dfa  is 

the non HIV mortality rate of intravenous drug users; 

f  is the rate of change of drug buddies per female; 

j is the female buddy users intravenous drug use 

transmission probability; fsC  is the rate of change of 

sex partners per female stranger user; f3 is the 

probability of acquiring HIV from heterosexual 

transmission per female stranger user; fbC  is the rate 

of change of sex partners per female buddy user; f4

is the probability of acquiring HIV from heterosexual 

transmission per female buddy users; fnC  is the rate 

of  change of sex partners per female non intravenous 

drug users; f5  is the probability of acquiring HIV 

from heterosexual transmission per female non 

intravenous drug user; and fa is the non HIV 

mortality rate. 

Furthermore, let fffff YandYYYY 54321 ,,,

denote the numbers of infected women corresponding 

to the five subgroup. Additionally, 

fffff AandAAAA 54321 ,,,  denote the numbers of 

women with AIDS in the corresponding five 

subgroups. Then the rates of change of the population 

sizes of the five subgroups of infected women are 

expressed as 
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where av  is the average duration of stay in the 

infected class. 

Similarly, the rates of change of the population 

sizes of the five subgroups of women with AIDS are 

given below: 
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where as  is the average survival time from diagnosis 

of AIDS to death.  

The model also includes fifteen corresponding 

equations for males. These equations have the same 

structure as the equation for females but contain male 

specific values for intravenous drug use and sexual 

values for intravenous drug use and sexual behaviour 

parameters. 

Williams and Anderson [19] formulated a model 

(for HIV-1 in England and Wales) which mimics 

transmission within and between different sexual 

activity classes (or needle-sharing classes in the case 

of intravenous drug users) and within and between 

different risk groups, such as male homosexuals, 

intravenous drug users, and heterosexuals. Patterns of 

mixing and sexual contact are described by mixing 

matrices whose elements define the degree of 

assortative (like with like) or disassortative (like with 

unlike) contact between different stratifications of the 

sexually active population. The model is a 

deterministic compartmental model of the type 

outlined by Anderson and May [8], where the 

population is not age structural but is stratified into 

five compartments representing an isolated 

population of sexually active adults, with a 

recruitment rate equal to the rate of leaving the 

population (due to cessation in sexual activity or 

natural mortality), so, in the absence of HIV, the 

population size is constant. Each compartment 

corresponds to one epidemiological state: first an 

uninfected susceptible state X; then three consecutive 

stages of HIV incubation, Y1, Y2, Y3; and finally A, 

the state of fully developed AIDS (there is no 

recovered class). The three incubation stages, which 

may be associated with differing degrees of 

infectiousness, correspond to the initial period of 

high HIV antigen concentration shortly after 

infection, the longer asymptomatic stage and the final 

stage with high levels of antigenaemia as the 

individual progresses to persistent generalized 

lymphadenopathy and AIDS-related complex before 

reaching fully developed AIDS [9,10,12,19]. 

There are two modes by which susceptibles may 

become infected: through sexual contact or by the 

sharing of needles. It was assumed that individuals in 

the AIDS compartment are neither sexually active 

nor do they share needles; these may be optimistic 

assumptions.  

Each compartment is subdivided into 

heterosexual, IDU, and homosexual risk groups with 

each further subdivided into subgroups with low, 

medium, and high rates of acquisition of sexual 

partners. The proportion of new recruits allocated to 

each subgroup is held constant over time. To simplify 

the analysis, no distinction is made between males 

and females. This has the advantage of simplicity but, 

concomitantly, fails to allow for differing 

probabilities of the transmission of HIV from males 

to females and vice versa [19]. In essence, the labels 

heterosexual and homosexual are used to distinguish 

crudely between populations with differing HIV 

transmission rates, sexual mixing patterns, and 

distributions of activity levels (and associated rates of 

changing partners). The IDU group has a distinct set 

of parameters relating to sexual contact but is further 

distinguished by being subject to HIV transmission 

through the exchange of needle used for drug 

injections. 

The model consists of a set of coupled ordinary 

differential equations with the following structure: 
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where AandYYYX ,,,, 321  represent 

epidemiological states defined earlier. The activity 

groups (heterosexual, IDU or homosexual) are 

represented by subscript g , sexual activity by 

subscript l , and time by subscript t .  represents the 

rate at which susceptible individuals join the sexually 

active population,    the non AIDS mortality rate 

(that of leaving the sexually active population), and 

  the per capita force of infections. 1 , 2 and 3  

represent the rates of progression from each 

incubation stage, and   the AIDS-related mortality 

rate. The term for the rate of recruitment (omitting 

subscript t) is defined as 
 

 
h m k

khmhmglgl YXvp )(  19 

 

Here glp  represents the proportion of the original 

population in group g , and activity level vl,       

represents the per capita recruitment rate, and k the 

incubation stage; the summation simply gives the 

total non-AIDS population. The force or per capita 

rate of infection term   is the sum of the force of 

infection for sexual contact and that for needle 

sharing contact: 

Here c and k  represent rates of acquisition of new 

sexual and needle-sharing patterns respectively; g  

and h  define at-risk groups; L  and m  define sexual 

activity groups;  glhm  defines the proportions of 

sexual and needle-sharing partnerships that subgroup 

gl   has with subgroup hm,; k  and L  represent 

incubation stages and kgh  and  Nkgh  denote 

probabilities of transmission (defined per partner) for 

sexual contacts and needle sharing. 

Furthermore, a model based on the prevention of 

transmission to and from female sex workers (FSWs) 

with heterogeneous mixing that explains the 

mechanism of transmission of virus from FSW to 

adult males and vice versa was presented by 

Srinivasa Rao [20]. The male population that mixes 

with FSWs was divided into four classes: male 

susceptible, HIV infective, STD infective, and both 

STD and HIV infective. The rate of additions of male 

susceptibles from non-susceptible and STD cured 

were taken to be exponential, though in reality they 

may be different. At the same time, the number of 

individuals infected with HIV and STD per unit of 

time and the number who withdraw from risk 

behaviour are removed from the susceptibles. The 

withdrawal number was based on a general 

withdrawal rate, or dependent on individual 

behaviour.  HIV positive individuals can still be STD 

infective and vice versa. Other withdrawal cases, e.g., 

natural deaths, change of risk behaviour, etc., either 

from HIV (STD) infective or from dual infected, can 

be removed from respective compartments. Let F10, 

F20, F21 and F12 be four coefficients of movements 

from male susceptible to HIV infective, male 

susceptible to STD infective, HIV infective to both 

STD and HIV infective, respectively. Denote m  as 

the entry rate into the male susceptible compartment, 

and m  and m    as recovery rates from STD 

representing without and with HIV infection. m  is 

mortality rate; 10 is HIV transmission probability 

from FSW to a susceptible male; 20  is STD 

transmission probability from FSW to a susceptible 

male; 21  is HIV transmission probability from a 

FSW with both STD and HIV; and 21  and  are 

withdrawal rates of males due to reasons other than 

sexual activity. 
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The model is given as 
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Other coefficients are calculated in similar ways. 

)3,2,1,0(  isYi  are FSW counterparts of the male 

compartments. 

Focusing on sub-Saharan Africa, Mukandavire 

and Garirar [21] presented a sex-structured model for 

heterosexual transmission of HIV/AIDS in which the 

population was divided into three subgroups: 

susceptible, infectives, and AIDS cases. The 

subgroups were further divided into two classes 

consisting of individuals involved in high-risk sexual 

activities and individuals involved in low-risk sexual 

activities. The model considered the movement of 

individuals from high to low sexual activity groups as 

a result of public health educational campaigns [21].  

Details of some other interesting studies on 

heterosexual transmission of HIV can be obtained 

from [3,22,23,]. 

 

The limitations and the place of 
mathematical modeling in the fight against 
HIV/AIDS infections 

The importance of mathematical models in 

epidemiological research on the HIV/AIDS epidemic 

cannot be over emphasized. Epidemiological 

modeling is an important part of the epidemiologist’s 

role to build and test theories regarding the infection 

processes. Mathematical and computer simulation 

models are the experimental tools in epidemiology. 

Experiments with infectious disease in actual 

populations are often unethical or very expensive or 

impractical. Thus, modeling is essential for 

exploratory work. Apart from these important reasons 

for conducting mathematical modeling, repeatable 

experiments and accurate data are usually not 

available in epidemiology; hence mathematical and 

computer simulation models must be used to perform 

needed theoretical experiments with different 

parameter values and different data sets.  It is easy in 

a computer simulation to determine what will happen 

if one or several parameters are changed [5]. 

Another very important reason for HIV modeling 

is the value of models for theoretical evaluation and 

comparisons of detection, prevention, therapy, and 

control programs. Epidemiologists and politicians 

need to understand the effects of different policy 

decisions on the dynamics of a particular 

infection/chronic disease in order to decide which 

approach is the most ethical, appropriate and 

economical [5]. 

However, as Hethcote and Van Ark [5] 

mentioned, some limitations of epidemic modeling, 

such as the fact that an epidemiological model is not 

reality but rather it is an extreme simplification of 

reality. Also, deterministic models do not reflect the 

role of chance in disease spread and do not provide 

confidence intervals on results. Stochastic models 

incorporate chance, but are usually harder to analyze 

than the corresponding deterministic model. 
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