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Abstract 
Background: Salmonella enterica serovars Typhi and Paratyphi A are human host-restricted pathogens. Therefore, there is no small 

susceptible animal host that can be used to assess the virulence and safety of vaccine strains derived from these Salmonella serovars.  

However, infant mice have been used to evaluate virulence and colonization by another human host-restricted pathogen, Vibrio cholerae.   

Methodology: The possibility that infant mice host could be adapted for Salmonella led us to investigate the susceptibility of newborn and 

infant mice to oral infection with S. Typhi and S. Paratyphi A. Salmonella enterica serovar Typhimurium causes enteric fever in adult mice 

and this system has been used as a model for human typhoid. The pSTV virulence plasmid, not present in S. Typhi and S. Paratyphi A, plays 

an essential role in S. Typhimurium colonization and systemic infection of mice. We also conjugated pSTV into S. Typhi and S. Paratyphi A 

serovars and evaluated these transconjugants in newborn and infant mice. 

 Results: We determined that the spv virulence genes from the S. Typhimurium virulence plasmid are expressed in S. Typhi and S. Paratyphi 

A in a RpoS dependent fashion. Also, we determined that S. Typhi and S. Paratyphi A with and without pSTV transiently colonize newborn 

and infant mice tissues. 

Conclusion: Newborn and infant mice infected with S. Typhi and S. Paratyphi A do not succumb to the infection and that carriage of the S. 

Typhimurium virulence plasmid, pSTV, did not influence these results. 

 
Key words: Salmonella Typhi; Salmonella Paratyphi A; newborn mice, infant mice; virulence plasmid 

 
J Infect Dev Ctries 2010; 4(11):723-731. 
  
(Received 19 May 2010- Accepted 20 October 2010) 

 
Copyright © 2010 Santander and Curtiss. This is an open-access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 
Introduction 

Typhoid and paratyphoid fever are severe human 

diseases caused by S. Typhi and S. Paratyphi A 

respectively, with an estimated 16 million cases 

resulting in more than 600,000 deaths annually [1,2]. 

Both S. Typhi and S. Paratyphi A are human host-

restricted pathogens. The pathogenesis of typhoid 

and paratyphoid are poorly understood, in part due to 

the lack of a susceptible animal host that exhibits the 

same clinical signs as human infections. Attenuated 

S. Typhi strains have been used as live vectors to 

deliver foreign antigens either by expressing antigens 

or by delivering the antigen-encoding genes on 

eukaryotic expression plasmids [3,4,5]. The absence 

of an inexpensive, small animal host for pre-clinical 

evaluation of vaccine candidates is an obstacle to 

developing live attenuated S. Typhi vaccines. 

Chimpanzees infected with wild-type S. Typhi Ty2 

produced a mild clinical illness that resembled 

human typhoid fever, but only when given in a high 

dose (1x1011 CFU) [6]. This host is not convenient 

for high through-put analyses due to the high cost 

and scarcity of supply. In addition, since a high 

inoculum of wild-type is needed to cause clinical 

infection, this is not an ideal host for evaluating the 

virulence potential of attenuated strains [7].  

S. Typhi and S. Paratyphi A are unable to induce 

progressive disease in adult BALB/c mice challenged 

orally or parenterally with high doses ( > 109 orally; 

107 to 108 parenterally) [8,9,10,11,12]. The current 

method for assessing the safety of S. Typhi vaccines 

consists of inoculating mice intraperitoneally with 

moderated doses ( > 103 CFU) of S. Typhi suspended 

in hog gastric mucin [7]. However, death of the mice 

is believed to result from the toxic effects of 

endotoxin associated with the rapidly expanding 

peritoneal population of S. Typhi [13,14,15]. In 

addition, the attenuating effects of some mutations 

cannot be discerned by this method [16]. The use of 

other animal hosts, such as rabbits and pigs, has also 
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been explored, but these animals were found to be no 

more useful than mice [17, 18]. However, intranasal 

inoculation of mice has been used successfully to 

evaluate the immune responses to foreign antigens 

expressed by S. Typhi recombinant vaccines [19,20].   

S. Typhimurium, the causative agent of 

enterocolitis infection in humans and cattle, causes a 

lethal systemic disease in susceptible mice that 

resembles human typhoid infection [21,22]. The 

mouse assay has been adopted and extensively used 

to study pathogenesis and immunity of typhoid fever. 

However, a shortcoming of this assay is the fact that 

S. Typhimurium does not cause typhoid fever in 

humans, suggesting that genetic differences between 

S. Typhi and S. Typhimurium are critically important 

for the disease outcome in both mice and humans. 

Whole-genome sequencing has revealed genome 

degradation in host-restricted Salmonella serotypes 

[23]. Therefore, the evolution from a broad host 

range serovar such as Typhimurium, to host-

restricted serovars such as Typhi and Paratyphi A, 

may have occurred by genome degradation [21,23]. 

In addition, not all the information obtained using the 

S. Typhimurium mouse assay can be directly applied 

to improve understanding of typhoid fever since 

some of the virulence factors of S. Typhimurium 

such as Salmonella virulence plasmid pSTV, required 

for invasion of host tissues [24,25], are absent in S. 

Typhi and S. Paratyphi A [23,26,27,28].  

Nevertheless, infant mice have been used to 

measure the median lethal dose (LD50) as a parameter 

for disease production by Vibrio cholerae and other 

host-restricted bacterial strains [29,30,31] and 

therefore may be useful in developing a systemic 

infection model for S. Typhi and S. Paratyphi A, 

since adult mice are resistant to those pathogens [10]. 

In this study, the colonization and pathogenesis 

potential of S. Typhi and S. Paratyphi A in newborn 

and infant mice was evaluated. Newborn and infant 

mice were observed to be colonized by S. Typhi and 

S. Paratyphi A, but were tolerant of the infection. In 

addition, whether S. Typhi and S. Paratyphi A 

carrying and expressing the S. Typhimurium 

virulence plasmid were able to better infect and 

colonize newborn and infant mice was evaluated. 

 

Methodology 
Bacterial strains and culture conditions 

The bacterial strains and plasmids used in this 

study are listed in Table 1. Bacteriological media and 

components were from Difco (Franklin Lakes, NJ). 

Antibiotics and reagents were from Sigma (St. Louis, 

MO). Salmonella strains were grown at 37°C in 

either buffered magnesium minimal medium pH 5.5 

(MgM) [32] or LB medium [33]. For plates, media 

was solidified with 1.5% (wt/vol) agar. When 

required, medium was supplemented with 

tetracycline (tet; 12.5 g/ml), L-cysteine-HCl (cys; 

22 g/ml), DL-tryptophan (trp; 20 g/ml) and L-

histidine-HCl (his; 22 g/ml). Buffered saline with 

gelatin (BSG) [34] was used as a diluent and to 

suspend bacteria prior to inoculation of mice. 

 

Beta-galactosidase assays 

Expression of spvR-lacZ and spvA-lacZ fusions 

in RpoS+ and RpoS– S. Typhi was determined by -

galactosidase activity assay [35]. Strains were 

transformed with pGTR72 (spvR-lacZ, operon 

fusion), pGTR90 (spvA-lacZ, operon fusion) or 

pGTR75 (tet-lacZ operon fusion control) [36] and 

grown in MgM medium to stationary phase. The spv 

operon is up-regulated under conditions that mimic 

the Salmonella containing vacuole (SCV) [33]. MgM 

media was used for this experiment because it 

mimics the environment of SCV [37].  

 

Construction and characterization of S. Typhi and S. 

Paratyphi A carry pSTV 

S Typhi and S. Paratyphi A strains harboring the 

S. Typhimurium virulence plasmid were constructed 

by conjugation on minimal media [38]. Plasmid 

pStSR101 is a Tnmini-tet-labeled virulence plasmid 

derivative, which can restore the full virulence of 

pSTV-cured strains of S. Typhimurium [25]. Like the 

wild-type virulence plasmid, it is self-transmissible 

[38].  S. Typhimurium 3351 SL1344 hisG carrying 

pStSR101 was used as the donor. Conjugation was 

performed in M9 minimal media agar [39], 

supplemented with cys, trp, and his. Selection was 

performed on M9 media supplemented with cys, trp 

and tet to select for S. Typhi and S. Paratyphi A 

transconjugants and against the histidine-requiring S. 

Typhimurium donor. Transconjugants were 

characterized for LPS, Vi antigen (S. Typhi), 

biochemical properties, and nutritional requirements 

as described [39] and were found to exhibit the 

expected phenotypes (Table 1). The stability of 

pStSR101 in S. Typhi and S. Paratyphi A was 

determined essentially as described by Konjufca et 

al. [40], except that strains were grown in the 

absence of tetracycline for fifty generations, at which 

point cells were plated onto LB agar and individual 

colonies were screened for tetracycline resistance. 
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Table 1. Salmonella strains and relevant characteristics 
  

Strain Relevant characteristics Origin 

Source or 

reference 

 

3744 S. Typhi ISP1820 
Wild-type, RpoS+, Cys, Trp, OD1:Hd:-:Vi, V & 

V/W form 
Wild-type 41 

3744 S. Typhi ISP1820 (pStSR101) 
Wild-type RpoS+, Cys, Trp, OD1:Hd:-:Vi, V & 

V/W form, Tetr 
3744 This study 

3761 S. Typhimurium UK-1 RpoS+, pSTV, OB1:Hi:H2:- Wild-type 42 

3769 S. Typhi Ty2 Wild-type, RpoS, Cys , OD1:Hd:-:Vi, V form Wild-type 43 

3769 S. Typhi Ty2 (pStSR101) Wild-type, RpoS, Cys , OD1:Hd:-:Vi, V form, Tetr 3769 This study 

8219 S. Paratyphi A RpoS+, Cryptic plasmid pSPA1, OA:Ha:-:- Wild-type ATCC 9281 

8387 S. Paratyphi A RpoS+, Cryptic plasmid cured, OA:Ha:-:-  8219 This study 

8387 S. Paratyphi A (pStSR101) RpoS+, OA:Ha:-:-, Tetr 8387 This study 

8438 S. Typhi Ty2 RpoS+, Cys, OD1:Hd:-:Vi, V & V/W form 3769 41 

8438 S. Typhi Ty2 (pStSR101) RpoS+, Cys, OD1:Hd:-:Vi,  V & V/W form, Tetr 8438 This study 

8740 S. Typhi CT18 RpoS+, Vi–, OD1:Hd:-:-, W form Wild-type 27 

3337 S. Typhimurium SR-11 RpoS+, gyrA1816, pSTV–, OB1:Hi:H2:- 3306 25 

3351 S. Typhimurium SL-1344 

(pStSR101) 
RpoS+, rpsL, hisG, Tetr, OB1:Hi:H2:- 3340 25 

Plasmids    

pGTR72 spvR-lacZ,cat  44 

pGTR90 spvA-lacZ,cat  44 

pGTR75 

spvR::lacZ,cat cat, same as pGTR72, except the 

lacZ,cat is inserted in opposite orientation, under 

control of tet promotor of the plasmid  

 44 

pSTV spvRABCD, pefBACD, rck  25 

pStSR101 spvRABCD, pefBACD, rck,  Tnmini-tet-  25 

 

Reverse Transcriptase-PCR 

Expression of spvR and spvA in S. Typhi and S. 

Paratyphi A from pStSR101 was evaluated by RT-

PCR. Total RNA extraction was performed by 

RNeasy QIAgene kit (Hilden, Germany) from strains 

grown in MgM media at 37C to stationary phase 

[33,37]. Reverse transcription and PCR was 

performed using the one-step RT-PCR QIAgene kit. 

Specific primers were used for the spvR (5’-

GGAAACAGGTTCCTTCAGTATCGC-3’ and 5’-

TATTTGGCTGTTAACGGCTCTCCC-3’) (size of 

the spvR amplified fragment: 349 bp) and spvA (5’-

TTGTCCGTCAGACCCGTAAACAGT-3’ and 5’-

TCTTCCAGCGACACATCGGTATT CAG-3’) (size 

of the spvA amplified fragment: 358 bp) genes. 16S 

rRNA primers were used as control of expression (5’-

ACTGGCAGGCTTGAGCTTGTAGA-3’ and 5’-

AAGGGCACAACCTCCAAGTA GACA-3’) (size 

of the 16S rRNA amplified fragment: 158 bp).  

 

Animal experiments  

BALB/c newborn and infant mice (Charles River 

Laboratories, Wilmington, MA) were bred and 

maintained at 22C to 23C with 12 hours of 

illumination daily. Mice older than two weeks were 

separated from their mothers 4 hours before infection 

and fed with regular food. Bacterial strains were 

grown overnight in standing cultures that were 
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diluted 1:100 in prewarmed LB broth and grown with 

mild aeration to an OD600 of 0.8 to 0.9. Bacteria were 

sedimented by centrifugation at room temperature 

and resuspended in BSG to densities appropriate for 

the inoculation route and dose. Newborn mice (3 to 

24 hours) and infant mice (48 hours to 3 weeks old) 

were challenged with ~109 CFU of S. Typhi, S. 

Paratyphi A, or S. Typhimurium. Ten microliters of 

~109 CFU of the bacterial strain suspended in BSG 

were orally administered. Intranasal inoculations 

consisted in 5 l of ~109 CFU of the bacterial strain 

suspended in BSG, administered without anesthesia. 

Mice were euthanized via asphyxiation with CO2 and 

necropsied at various times. The bacterial titers in 

newborn mice inoculated orally were determined at 

3, 7, 14 and 21 days post oral infection. Spleen, liver, 

and the intestines were collected and washed with 

BSG until homogenization. The homogenizer 

(Brinkman, Westburg, NY) was washed with 5% 

Amphyl, followed by a wash with 70% ethanol, 

followed by two washes with dH2O. Homogenized 

tissues were plated onto MacConkey agar plates 

supplemented with 1% lactose to determine the 

number of viable bacteria. Salmonella colonies were 

white on the MacConkey plates. Isolated colonies 

were further identified by agglutination with 

Salmonella specific antiserum (Table 1) and 

antibiotic resistance marker. 

 

Table 2.  Infection of newborn and infant mice with S. Typhi and S. Paratyphi A.  
 

Strain 
Inoculating dose 

(CFU) 
Mice age Survivors/total Route 

3744 S. Typhi ISP1820 1.1 x 109 3 weeks 5/5 oral 

 1.1 x 109 1 week 7/7 oral 

 1.1 x 109 <24 h 6/6 oral 

 1.1 x 109 1 week 7/7 intranasal 

3769 S. Typhi Ty2 (RpoS–) 1.1 x 109 <24 h 5/5 oral 

8438 S. Typhi Ty2 (RpoS+) 1.5 x 109 <24 h 4/4 oral 

8740 S. Typhi CT18 1.0 x 109 <24 h 8/9 oral 

8387S. Paratyphi A 1.1 x 109 <24 h  8/8 oral 

 1.1 x 109 1 week 9/9 intranasal 

3337 S. Typhimurium SR-11 2.1 x 109 3 weeks  0/5 oral 

 2.1 x 109 <24 h 0/5 oral 

 
Newborn: 3 h to 24 h after birth. Infant: 48 h to 3 weeks old. Mice were observed for 4-5 weeks.  

3337 S. Typhimurium pSTV-cured was used as positive control. 

 

Statistics 

Mann-Whitney U Test (version 5.0; GraphPad 

Software, Inc.) was used for comparing the 

expression of spv-lacZ fusions.  

 
Results  
Virulence and colonization of S. Typhi and S. 

Paratyphi A in newborn and infant mice 

 Newborn and infant mice infected orally with S. 

Typhi and S. Paratyphi A survived without any 

symptoms of disease, while the mice inoculated with 

a S. Typhimurium strain cured of plasmid pSTV 

succumbed to the infection (Table 2). Infant mice, 

one to three weeks of age, and newborn mice infected 

intranasally with S. Typhi and S. Paratyphi A strains 

also survived without any symptoms of disease 

(Table 2). The bacterial titers in newborn mice 

inoculated orally were determined at 3, 7, 14 and 21 

days post infection. Spleen, liver, and the intestines 

were collected and the number of viable bacteria was 

determined. S. Typhi RpoS+ and S. Paratyphi A 

RpoS+ were able to colonize the intestines for three 

weeks (Figure 1A). S. Typhi Ty2 RpoS– was less able 

to persist in the intestines and cleared after one week. 

S. Typhi and S. Paratyphi A were able to colonize the 

spleen and liver of infected mice and the RpoS- strain 

Ty2 was more effectively cleared than the RpoS+ 

strains (Figures 1B and 1C). These results are 

consistent with a report that rpoS S. Typhimurium 

mutants are less persistent in mice than their wild-
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type RpoS+ parent strains [41, 45]. Taken together, 

these results show that although wild-type S. Typhi 

and S. Paratyphi A can transiently colonize young 

mice, they are not capable of establishing a 

disseminating infection. 

 

Table 3. Infection of newborn and infant mice with S. Typhi pStSR101 and S. Paratyphi A pStSR101. 

 

Strain 
Inoculating 

dose (CFU) 
Mice age Survivors/total Route 

3744 S. Typhi ISP1820 (pStSR101) 1.2 x 109 <24 h 6/6 oral 

 1.1 x 109 <24 h 7/7 intranasal 

3769 S. Typhi Ty2 (pStSR101) 1.2 x 109 <24 h 5/5 oral 

8387 S. Paratyphi A (pStSR101) 1.1 x 109 <24 h 10/10 oral 

 1.1 x 109 <24 h 7/7 intranasal 

3351 S. Typhimurium SL-1344 (pStSR101) 1.8 x 109 3 weeks 0/5 oral 

 1.8 x 109 <24 h 0/8 oral 
 
Newborn: 3 h to 24 h after birth. Infant: 48 h to 3 weeks old. Mice were observed between 4-5 weeks.  

3351 S. Typhimurium (pStSR101) was used as positive control.   

 
Figure 1. Colonization of S. Typhi and S. Paratyphi A with and without pStSR101 virulence plasmid in newborn mice < 24 h 

old. A-C. Newborn mice orally infected with Salmonella without pStSR101; D-F. Newborn mice orally infected with 

Salmonella harboring pStSR101; A, D. Intestine colonization; B, E. Spleen colonization; C, F. Liver colonization. Each point 

represents the average between 4 animal tissues. 
 

 
 

Expression of spv genes in S. Typhi RpoS+ and RpoS– 

The S. Typhimurium virulence plasmid is 

required for colonization of mouse tissues [24]. An 

investigation into whether the addition of the 

virulence plasmid to S. Typhi and S. Paratyphi A 

could enhance their ability to colonize young mice 

was conducted. One virulence plasmid operon that is 

critical for host invasion is encoded in the spv region 

[24,33,46]. The spv region consists of five genes, 

spvRABCD which are all transcribed in the same 
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direction [46]. The spvR gene encodes SpvR, which 

activates the transcription of both the spvR and 

spvABCD transcriptional units [12,47,48]. In 

addition, the sigma factor RpoS is also required for 

maximum expression of the operon [49,50,51,52].  

Because of the central role of spv in tissue 

colonization, expression of spvR-lacZ and spvA-lacZ 

fusions in RpoS+ and RpoS– S. Typhi by -

galactosidase activity were compared to establish that 

these genes were able to be transcribed in S. Typhi 

and that transcription is dependent upon RpoS. [35]. 

The RpoS+ S. Typhi strains produced -galactosidase 

levels comparable to the S. Typhimurium RpoS+ 

control for both fusions (Figures 2A and 2B). In 

contrast, reduced expression was observed for S. 

Typhi Ty2, which has a defective rpoS allele due to a 

frame-shift mutation at nucleotide 993 [53]. These 

results indicate that S. Typhi is able to transcribe the 

spv genes to the same levels as S. Typhimurium and 

confirm that maximum spv expression requires RpoS.  

Stability and expression of pSTV plasmid in S. Typhi 

and S. Paratyphi A 

A tetracycline-marked derivative of the S. 

Typhimurium virulence plasmid, pStSR101 [24], was 

moved into the S. Typhi and S. Paratyphi A strains. 

Because these host-restricted strains do not normally 

carry this plasmid, it is possible that the plasmid may 

not be maintained for enough generations to colonize 

a mouse. Therefore, the stability of pStSR101 in S. 

Typhi and S. Paratyphi A was examined. The 

pStSR101 virulence plasmid was stably maintained 

for 50 or more generations in all S. Typhi and S. 

Paratyphi A strains. In addition, whether the spv 

genes were transcribed from this plasmid was 

evaluated. RT-PCR products were detected in all 

strains harboring pStSR101 (Figure 3), indicating 

that the spv genes are transcribed in S. Typhi and S. 

Paratyphi A. 
 

Figure 2. Evaluation of spvR and spvA expression in S. Typhi by -galactosidase assay. A. Evaluation of spvR; B. Evaluation 

of spvA; C. Control. 3769 S. Typhi Ty2 RpoS–; 3744 S. Typhi ISP1820 RpoS+; 3337 S. Typhimurium SR-11 RpoS+; 

strains harboring the respective plasmids; the strains where grown in MgM media to stationary growth phase. *P<0.01 for the 

RpoS+ strains compared with RpoS– strain, significant differences are indicated. 
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Virulence and colonization of S. Typhi and S. 

Paratyphi A harboring pSRSt101 in newborn and 

infant mice 

The effect of the S. Typhimurium virulence 

plasmid on the ability of S. Typhi and S. Paratyphi A 

to cause disease in newborn and infant mice was 

evaluated. When newborn and infant mice were 

orally inoculated with S. Typhi and S. Paratyphi A 

harboring pStSR101, they survived without any 

disease symptoms, whereas all the mice inoculated 

with S. Typhimurium died (Table 3). Infant mice and 

newborn mice infected intranasally with S. Typhi or 

S. Paratyphi A carrying pStSR101 also survived 

without any symptoms of disease (Table 3).  

The presence of pStSR101 did not enhance the 

ability of S. Typhi and S. Paratyphi A to colonize 

infant mice (Figure 1). Unexpectedly, the presence of 

pStSR101 in S. Typhi Ty2 RpoS resulted in a slight 

increase in persistence in the intestines compared to 

the plasmid-free strain (Figures 1A and 1D), 

indicating that there may be a virulence plasmid 

gene(s) that can complement the defect in intestinal 

colonization imparted by the RpoS phenotype. 

Recently, it has been reported that pPST98, a 

promiscuous R plasmid found in a multi-drug 

resistant isolate of S. Typhi from Asia, carries the spv 

region. This plasmid confers antibiotic resistance and 

increases virulence in mice when transferred to 

pSTV– S. Typhimurium [54]. While it is possible that 

spv genes may confer an enhancement of virulence in 

human hosts, our results indicate that they have no 

effect on infant mouse colonization in wild-type S. 

Typhi. 

 

Discussion 
In summary, these results show that S. Typhi and 

S. Paratyphi A can transiently colonize young mice, 

but cannot establish a lethal infection. The spv genes 

are transcribed in S. Typhi and S. Paratyphi A and a 

functional rpoS gene is required for maximum 

expression. However, the virulence plasmid does not 

enable S. Typhi or S. Paratyphi A to establish a lethal 

infection in newborn or infant mice.

 
Figure 3. Expression of spvR and spvA evaluated by RT-PCR (agarose gel 1%). 1. 3769 S. Typhi Ty2; 2. 3744 S. Typhi 

ISP1820; 3. 8387 S. Paratyphi A; 4. 3769 S. Typhi  Ty2 (pStSR101); 5. 3744 S. Typhi ISP1820 (pStSR101); 6. 8387 S. 

Paratyphi A (pStSR101); 7. 3351 S. Typhimurium SL-1344 (pStSR101);  8. 3761 S. Typhimurium UK-1 pSTV+; 16S: 16S  

(rrnA) was used as positive control; DNA control: the RNA samples were used as templates in a PCR reaction to amplify the 

16SrRNA to detect DNA contamination.  
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