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Abstract 
Introduction: Viral hemorrhagic fever (VHF) outbreaks, with high mortality rates, have often been amplified in African health institutions 

due to person-to-person transmission via infected body fluids.  By collating and analyzing epidemiological data from documented outbreaks, 

we observed that diagnostic delay contributes to epidemic size for Ebola and Marburg hemorrhagic fever outbreaks. 

Methodology: We used a susceptible-exposed-infectious-removed (SEIR) model and data from the 1995 outbreak in Kikwit, Democratic 

Republic of Congo, to simulate Ebola hemorrhagic fever epidemics. Our model allows us to describe the dynamics for hospital staff 

separately from that for the general population, and to implement health worker-specific interventions.   

Results: The model illustrates that implementing World Health Organization/US Centers for Disease Control and Prevention guidelines of 

isolating patients who do not respond to antimalarial and antibacterial chemotherapy reduces total outbreak size, from a median of 236, by 

90% or more. Routinely employing diagnostic testing in post-mortems of patients that died of refractory fevers reduces the median outbreak 

size by a further 60%. Even greater reductions in outbreak size were seen when all febrile patients were tested for endemic infections or when 

febrile health-care workers were tested.  The effect of testing strategies was not impaired by the 1-3 day delay that would occur if testing 

were performed by a reference laboratory. 

Conclusion: In addition to improving the quality of care for common causes of febrile infections, increased and strategic use of laboratory 

diagnostics for fever could reduce the chance of hospital amplification of VHFs in resource-limited African health systems. 

 
Key words: modeling; viral hemorrhagic fever; Ebola hemorrhagic fever; outbreak; health workers. 
 
J Infect Dev Ctries 2014; 8(9):1148-1159. doi:10.3855/jidc.4636 

 
(Received 30 December 2013 – Accepted 11 March 2014) 

 

Copyright © 2014 Okeke et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Introduction 
Febrile illnesses or fevers are often the result of 

viral, bacterial or parasitic infection. It is impossible to 

determine the precise etiology of many febrile 

illnesses based on signs and symptoms alone. 

Diagnosis can usually only be confirmed with 

laboratory support, even after thorough clinical 

evaluation and history-taking, and with knowledge of 

local endemic pathogens. In many parts of Africa 

febrile illnesses are common but treatment is almost 

always prescribed after syndromic diagnoses. Fevers 

are invariably diagnosed as malaria at first 

presentation in malaria-endemic areas, where an 

alternative diagnosis is often proposed only when first- 

or second-line antimalarial chemotherapy fails. 

Diagnosis by sequential treatment leads to overuse of 

valuable antimicrobials and is detrimental to the 

management of infections caused by bacteria and by 

other causes of fever [1-5]. Despite these 

shortcomings, and because laboratory diagnostics are 

often unavailable, diagnosis by sequential treatment is 

also recommended for life-threatening, blood-borne 

viral hemorrhagic fevers (VHFs) [6], such as the 

illnesses caused by filoviruses Ebola and Marburg as 

well as Lassa and Lujo arenaviruses, where it 

contributes to diagnostic delay. 

Hemorrhagic viruses are devastating but relatively 

uncommon causes of fever in Africa and are therefore 

not routinely considered in primary differential 

diagnoses unless an outbreak is known to be in 

progress. Because person-to-person transmission via 

infected body fluids is common, delays to detection 

mean that hospitals can and do amplify epidemics 

when they occur [7,8]. Routine hospital infection 

control precautions can prevent the spread of most 

pathogens within hospitals but for some high-risk 

agents, special barrier precautions, such as isolation of 

patients and post-contact decontamination of health 
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workers, are necessary. These procedures are routinely 

used when patients in affluent countries fall ill 

following a recent visit to malaria and hemorrhagic 

virus endemic areas, accounting for why numerous 

exported VHF patients have not initiated outbreaks 

abroad [9-11]. 

Most hospitals in equatorial Africa do not 

routinely isolate febrile patients nor do they routinely 

use strict barrier precautions. While hospital-amplified 

VHF outbreaks have been linked to unacceptable 

needle-sharing and absence of basic infection control 

precautions in some institutions [7,12,13], the vast 

majority of documented VHF outbreaks involving 

hospitals have seen nosocomial transmission due to 

inadequate isolation facilities and because gloves and 

expensive protective clothing were not always used by 

attending personnel [13-16]. As most in-patients in 

often overcrowded, under-resourced and understaffed 

hospitals in equatorial Africa have a fever of infectious 

origin, highest-level barrier precautions cannot 

feasibly be implemented, nor do most common 

infections require them. Notwithstanding, appropriate 

barrier practices can be, and have been, rapidly 

instituted in African hospitals during hemorrhagic 

fever outbreaks [16-19], and have led to rapid 

abatement of all documented Ebola and Marburg 

outbreaks [20,21]. 

In such a setting, early detection of VHFs can 

reduce the size of hospital-amplified outbreaks 

considerably. This is illustrated by a 2004 outbreak in 

Yambio, Sudan, where health workers noticed a 

cluster of cases and suspected that a filovirus endemic 

might have begun [22]. In an exemplary case of 

deductive epidemiology combined with access to 

testing facilities in nearby Kenya the epidemic was 

identified very rapidly. As shown in Table 1, the 

reported case number from Yambio was much smaller 

than most outbreaks that saw diagnostic delays of 

longer than a month.  Smaller outbreaks have also 

included fewer infected health workers (Table 1). 

Post-outbreak assessment of a 2000 Uganda 

outbreak in Gulu, in which 425 people contracted 

Ebola virus, proposed that an “astute health worker”, 

who could recognize anomalies in fever patients might 

be the key to early detection [23]. However VHFs 

often do not present symptoms different from those 

seen in malaria, typhoid fever and other infections at 

early stages and the clinical case definitions for Ebola 

and Marburg hemorrhagic fevers are unreliable 

[8,18,23,24]. The Uganda outbreak eventually came to 

light because physicians did detect an anomaly, but 

that was a spike in the number of deaths, by which 

time the epidemic was well underway [14,25]. 

Recognizing unusual cases early, without 

epidemiological context, in an outbreak is difficult for 

even the most skilled diagnostician when such cases 

Table 1: Outbreak size, fatalities, time to detection and numbers of health workers infected in documented filovirus outbreaks 

without clear evidence of needle-reuse. It is probable that only a fraction of outbreaks are detected and reported even though 

VHFs are classified as notifiable diseases [49]. An outbreak at the Masango Hospital, for instance, was only documented 

retrospectively, following investigation of the widely publicized 1995 connected outbreak in Kikwit [25] and a Lassa fever 

outbreak in Nigeria was only confirmed after death of the last infected case, a physician [7]. Moreover, just as outbreaks may 

be unreported, case reporting within recorded outbreaks is likely underestimated. 

Outbreak (Year: Viral Strain, location) Cases 
Fatalities (Case 

fatality %) 

Proportion of 

infected that were 

health workers 

Time to 

detection 

1995: Ebola Zaire in Kikwit, Democratic Republic of Congo 

[29,50] 
315 247 (78.4) 25.4% (80/315) 4.5 months 

1998:  Marburg in Durba, Watsa Zone, Democratic republic 

of the Congo [51] 
154 125 (81.2) 0.6% (7/154) 6 months*, ** 

2000: Ebola Sudan in Gulu, Uganda [14,23,52] 425 224 (52.7) 7.3% (31/425) 1.5 months 

2002:  Ebola in Ogooué-Ivindo province, Gabon; at the Congo 

border [53,54] 
124 97 (78.2) 2.4% (3/124) 14 days** 

2003:  Ebola in Kéllé  district, Democratic republic of the 

Congo [33] 
143 128 (89.5) Unknown 30 days 

2004:  Ebola in Yambio, Sudan [22,34] 17 7 (41.2) 11.8% (2/17) 10 days 

2005: Marburg in Uige, Angola [15] 374 158 (42.2) 4.8% (18/374) >1 month 

2005:  Ebola Zaire in Etoumbi district Democratic republic of 

the Congo [55] 
12 10 (83.3) 0 1 month 

2007:  Ebola Bundibugyo in Bundibugyo, Uganda [56] 149 37 (25%) 4.0% (6/149) 4 months 

2007:  Marburg in Ibanda district, Uganda [19] 4 1 (25%) 0% (0/4) 16 days 

*Civil conflict restricted access to the outbreak location 

**Multiple simultaneous outbreaks confirmed  
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present amidst similar ‘detractor’ cases [26]. 

Most of the available literature relating to 

preventing VHF outbreaks focuses on containing 

outbreaks that have already been initiated. We used a 

mathematical model to address interventions that 

could be implemented before an outbreak occurred 

and lead to early detection of VHF outbreaks, with the 

added benefit of increasing the overall quality of care 

in resource-limited hospitals. 

Laboratory diagnostic options for early detection 

of Ebola and other hemorrhagic viruses exist but have 

limitations. Gold standard viral amplification can only 

be performed in biosafety level-4 laboratories but 

antibody and nucleic-acid based tests that can use 

inactivated specimens can be used in the field and at 

district hospitals [18,19,27]. Nucleic-acid based tests, 

such as RT-PCR offer the most promise for use in 

African hospitals but require molecular biology 

facilities that are far from ubiquitous. 

Although costs for such tests are falling, they 

remain too high for resource limited clinics to use 

routinely for every febrile diagnosis today. One way to 

identify epidemics early might therefore be to identify 

informative patient sub-populations that could be 

screened routinely. Because data from earlier 

outbreaks suggests that health workers likely represent 

such a sub-population, we here extend a previous 

SEIR model for Ebola outbreaks [28] to model disease 

dynamics in health workers separately from the 

general population. We then use the model to simulate 

outbreaks and their detection via different diagnostic 

protocols. 

 

Methodology 
The modified SEIR model 

Ebola outbreaks have previously been modeled 

using a basic susceptible-exposed-infectious-removed 

(SEIR) design [28]. In such a model, the population is 

described by four compartments which contain 

susceptible, exposed, infectious and removed 

individuals (Figure 1). The dynamics of an epidemic 

are determined by three processes: 1. Susceptible 

individuals may get exposed through contact with 

infectious ones. The rate of this process is assumed to 

be bI/N, where I is the number of infectious 

individuals, N is the total population size, and b is the 

rate constant associated with infection. 

2. Exposed individuals are those individuals that 

are infected but have not yet developed symptoms and 

are therefore not yet infectious. As the disease 

progresses, exposed individuals become infectious. 

This process is described by the rate k. 

3. Infectious individuals in turn are assumed to 

progress into removed individuals at rate g, either 

through recovery or death (Figure 1). For Ebola 

outbreaks, a SEIR design has been used to estimate 

epidemic parameters [28]. More detailed approaches 

include a six-compartment model, which allows for a 

separate compartment of hospitalized cases as well as 

a category of infectious cadavers [20]. 

Figure 1. Schematic representation of the basic SEIR model. 

The model has four compartments, representing susceptible (S), 

exposed (E), infectious (I) and recovered/removed (R) 

individuals. 

Figure 2. Schematic representation of the modified SEIR 

model developed for hypothesis testing in this study. Our 

model extends a simple SEIR model to two subpopulations, the 

general population and health workers. While disease-specific 

parameters are the same for both subpopulations, they are 

assumed to differ in their exposure, resulting in different 

infection rates, b1 and b2. 
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To separately model individuals within health 

centers, such as health workers, who likely play a 

significant role in the disease dynamics, we here 

extend the basic SEIR model to two sub-populations: 

the general population and health workers. Within 

each of these groups, there are four subtypes: 

susceptible, exposed, infectious and removed. The 

resulting eight categories are denoted by S1, E1, I1, R1, 

S2, E2, I2 and R2, where index 1 stands for the general 

population and index 2 for the health worker 

population. A schematic representation of the model is 

show in Figure 2. 

The rates k and g are assumed to be the same for 

health workers and the general population. This is 

because they are mainly determined by disease-

specific factors. In principle these rates might differ 

between hospitalized and non-hospitalized population, 

for instance because hospitalized patients might have 

weakened immunity, which in turn could affect the 

dynamics of hospital amplification; this cannot be 

captured by our approach. The two populations are 

assumed to be similar in their infectiousness, i.e. 

infectious members of both populations are equally 

likely to transmit the disease to others. However, 

health workers are assumed to differ from the general 

population in their exposure, leading to different 

transmission rates b1 and b2 in the two subpopulations. 

For outbreaks that affect only a small proportion of 

the population, it can be assumed that the vast majority 

of the population remain in the pool of susceptible 

individuals, i.e. S ≈ N. This has been shown to apply 

to the 1995 outbreak in Kikwit [28] and allows to 

simplify the model to the following system of four 

linear ordinary differential equations:  

 dE1/dt = b1(I1+I2) - kE1 

 dI1/dt = kE1 - gI1 

 dE2/dt = b2(I1+I2) – kE2 

 dI2/dt = kE2 - gI2 

 

Model parameters 

The dynamics for the entire population in this 

model is the same as in the SEIR model used by 

Chowell et al [28]: 

 dE/dt = d(E1+E2)/dt = (b1+b2) I - kE 

 dI/dt = d(I1+I2)/dt = kE - gI 

 

For the total population, our model and the model 

by Chowell et al. [28] therefore result in exactly the 

same predictions. However, in contrast to the model 

by Chowell et al. [28], our model explicitly describes 

the dynamics in the health worker subpopulation. This 

extension requires an additional parameter describing 

how the different subpopulations differ in their 

exposure, and allows us to simulate diagnostic 

schemes that differentiate between the two sub-

populations. 

Because both models result in the same overall 

dynamics, we apply the parameter values as obtained 

by Chowell et al. [28] to our model: disease 

progression rate k = 0.19 (day-1); recovery/death rate g 

= 0.18 (day-1); pre-intervention infection rate b = b1+b2 

= 0.33 (day-1); and post-intervention infection rate b = 

b1+b2 = 0.09 (day-1). These estimates are based on data 

from the nosocomial phase of the 1995 Kikwit 

outbreak. 

To calculate the relative contributions of the two 

subpopulations b1 and b2 to the overall infection rate b, 

we use in the following the health-worker specific data 

as given in Chowell et al [28]. The linear dynamics 

used in our model implies that before interventions are 

implemented, the outbreak grows exponentially in 

both sub-populations at the same rate. This is in good 

agreement with the observed dynamics: the growth 

rate of cumulative cases among the health workers is 

approximately the same as the growth rate in the entire 

population (see Figure 3). Since the number of new 

infections among the health workers is a constant 

Figure 3. Cumulative cases over time for the 1995 outbreak 

in Congo for the time span from March 1 to June 31 1995 

[28,29]. Black symbols stand for total cases, gray symbols for 

health workers. The lines show a linear regression of the log-

transformed cumulative cases vs. time until interventions were 

implemented on May 12 [29]. The outbreak in this period of 

time shows approximately exponential growth. The growth rate 

is approximately the same in both subpopulations. 

Approximately 39% of the cases during this period were health 

workers. 
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fraction b2/(b1+ b2) of the overall new infections and 

the outbreak started from a near disease-free 

population, the ratio between transmission rate to 

health workers b2 and the overall transmission rate 

b1+b2 is the same as the ratio of cumulative health 

worker cases to total cumulative cases until 

interventions. This ratio is approximately 0.39, which 

gives pre-intervention transmission rates of b1= 0.2 

(day-1) and b2 = 0.13 (day-1). Note that if the health 

worker population was protected from infection, the 

value for R0 = b1/g would be close to 1, rather than 1.8 

as estimated by Chowell et al [28] for the population 

with unprotected health workers. This highlights the 

role health worker-infections play for the disease 

dynamics. 

After interventions were implemented, a total of 

129 new cases were observed, 16 of which were health 

workers [28,29]. These new cases include individuals 

who were exposed before and after the implementation 

of interventions. At the time when interventions where 

implemented, the number of new cases was about 8 

per day [28,29]. Given that the number of new cases 

equals kE, one would expect at this point about 40 

exposed individuals, 16 of which are health workers. 

Thus while a substantial number of individuals from 

the general population became exposed post-

intervention, likely no or very few health workers 

were infected. This suggests a high success of health 

worker precautions for this particular epidemic, and 

indeed the WHO reported no new health worker cases 

among those who used post-intervention barrier 

nursing practices in that epidemic, with one case due 

to an inappropriate use of those practices [6]. Given a 

post-intervention transmission rate of b = 0.09 (day-1) 

as estimated by Chowell et al. [28], we therefore use 

post-intervention values of b1 = 0.09 (day-1) and b2 = 0, 

respectively. 

 

Stochastic simulations 

We use the above parameters to perform stochastic 

simulations of outbreaks for different diagnostic 

protocols. We start the simulations with a single 

exposed individual in the general population. For each 

time step (day) we determine for both streams the 

number of susceptible individuals becoming exposed, 

exposed becoming infectious, and infectious being 

removed (recovered or deceased).  The numbers of 

individuals becoming exposed, B1(t) and B2(t) are 

Table 2: Diagnostic scenarios for VHF tested using the SEIR model with two sub-populations.  Baseline diagnostic 

probabilities (p1 and p2) assume an “astute observer” calibrated from the Kikwit outbreak (see text).  For other scenarios, we 

assume an 80% hospitalization rate for the general population and 100% for health workers, compounded by other effects in 

some scenarios: a 25% chance of an infected surviving the 15-day delay in CDC and a 80% mortality rate in PMT. Included 

delays (d1 and d2) assume that malaria is diagnosed by point-of-care rapid diagnostic test or microscopy (return results on the 

same day), bacteria are detected by culture (returning results in 2 days) and hemorrhagic viruses are detected by RT-PCR at a 

reference laboratory (1 day). 

Scenario Refs p1 p2 d1 d2 

Baseline:  As unfolded in Kikwit, 1995 (Note 1) [29] 0.006 0.006 0 0 

WHO/ CDC (Note 2) [6] 0.2 0.25 15 15 

Utopian scenario (UTS; Note 3) [9,11,57] 0.8 1 1 1 

Febrile Health Worker (FHS; Note 4) This study 0.006 1 0 1 

Post-mortem testing (PMT; Note 5) This study 0.64 0.8 9 9 

Routine testing (RT; Note 6): This study 0.8 1 3 3 

Note 1: Baseline diagnostic probabilities (p1 and p2) assume an “astute observer” calibrated from the Kikwit outbreak (see text).  For other scenarios, we 

assume an 80% hospitalization rate for the general population and 100% for health workers, compounded by other effects in some scenarios: a 25% chance of 

an infected surviving the 15-day delay in CDC and a 80% mortality rate in PMT. Included delays (d1 and d2) assume that malaria is diagnosed by point-of-

care rapid diagnostic test or microscopy (return results on the same day), bacteria are detected by culture (returning results in 2 days) and hemorrhagic viruses 

are detected by RT-PCR at a reference laboratory (1 day). 

Note 2: WHO/ CDC recommendations for infection control in the African health care setting (CDC), recommending treatment failure for malaria and systemic 

bacterial infection as the means for identifying presumptive VHF cases. We conservatively selected two weeks for serial chemotherapy for malaria and 

bacterial infections.  In areas where resistance is common, serial chemotherapy for refractory infections can continue for much longer periods. 

Note 3: Everyone who becomes febrile within an endemic/high risk area is isolated immediately and tested or treated until diagnosis or discharge. This 

‘Utopian’ protocol is currently employed in affluent countries for patients recently returning from Africa. Isolation of all febrile patients in an endemic area, 

even for a short duration, would be infeasible. 

Note 4: Health workers are tested for a range of systemic pathogens, including endemic hemorrhagic viruses, whenever they are febrile.  No diagnosis beyond 

baseline applied to non-health workers. 

Note 5: Every febrile case that is managed according to the WHO/CDC recommended protocol described above but dies is tested post-mortem. We allowed 

one week to death of the first such case in the model. 

Note 6: The hospital uses routine laboratory tests for highly prevalent endemic infection (malaria and bacteria). Patients who test negative are isolated 

immediately and then tested for VHF.   
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drawn from a Poisson distribution with a mean of 

b1(I1(t)+I2(t)) and b2(I1(t)+I2(t)). The numbers of 

exposed becoming infectious, K1(t) and K2(t), are 

drawn from a binomial distribution with a probability 

parameter of k, and a number of E1(t) and E2(t) trials. 

The numbers of infectious becoming 

recovered/removed, G1(t) and G2(t), are drawn from a 

binomial distribution with a probability parameter of 

g, and a number of I1(t) and I2(t) trials. The overall 

dynamics is updated as  

 E1(t+1) = E1(t) + B1(t) - K1(t) 

 I1(t+1) = I1(t) + K1(t) - G1(t) 

 E2(t+1) = E2(t) + B2(t) - K2(t) 

 I2(t+1) = I2(t) + K2(t) - G2(t) 

 

Outbreak detection 

Depending on whether they are members of the 

general population or health workers, each individual 

that becomes infectious is assumed to be correctly 

diagnosed at a probability of p1 and p2, respectively. If 

an individual is diagnosed correctly, it will take a time 

of d1 and d2, respectively, from the day that individual 

becomes infectious until interventions are 

implemented and the outbreak dynamics change from 

pre-intervention to post-intervention. The values for 

these probabilities and delays depend on the diagnostic 

protocol and are given in Table 2. Once a VHF has 

been diagnosed, we assume that interventions are 

implemented without further delay. 

As reference scenario we use a simple “astute 

observer” [14] model. At a certain probability p1 a 

given general-population case will lead an observer, 

that is an astute health worker, to conclude that an 

Ebola epidemic is in process, and at a potentially 

different probability p2 a given health worker case will 

lead to the same conclusion.  In the case of the 1995 

Kikwit epidemic, we assume that no special attention 

was paid to health workers (as seems to have been the 

case), and thus set p1 = p2. The expected number of 

total cases until detection in this case is 1/p1. With a 

total of 154 cases at time of intervention, this means 

that p1 = 0.006. Certainly this is a rough model for 

detection, but we note that our main concern is 

comparing various more sensitive and specific 

detection strategies against this baseline, so that using 

a different model for the baseline should not have a 

major effect on our conclusions about the relative 

effects of other detection strategies on the size of the 

outbreak.  

In addition to the reference scenario, we used our 

model to evaluate the diagnostic scenarios shown in 

Table 2, and compared the outbreak size from these 

interventions to that obtained from the reference 

scenario on the Kikwit outbreak. In each case, once a 

VHF outbreak has been detected, we switch from pre-

intervention to post-intervention parameters. The latter 

model isolation and barrier nursing of all cases and 

probable cases along the lines specified in the WHO/ 

US Centers for Disease Control and Prevention (CDC) 

guidelines for African settings [6]. 

The diagnostic scenarios shown in Table 2 differ 

in the probabilities p1 and p2 at which a case in the 

general population and the health worker 

subpopulation is detected and in the time d1 and d2 it 

takes from onset of symptoms to diagnosis. As the 

detection probability, the delay depends on the 

subpopulation, and is denoted by d1 and d2. 

In summary, we use 6 different diagnostic 

scenarios. In the baseline scenario, are described 

above, we use a detection probability of p1=p2=0.006, 

and do not explicitly model a delay (i.e. d1=d2=0). In 

the WHO/CDC [CDC] scenario, we assume a long 

delay of  d1=d2=15 because serial chemotherapy for 

malaria and bacterial infections needs to fail before 

VHF's are considered. We assume that after such a 

delay, only 20% of cases from the general population 

and 25% of the health worker cases are available for 

further diagnosis. (The difference in p1=0.2 and 

p2=0.25 reflects the assumption that about 80% of the 

cases from the general population but 100% of the 

health worker cases are hospitalized at some point 

during sickness). In the 'utopian' scenario (UTS), we 

assume high detection probabilities of  p1=0.8 and 

p2=1.0 and a diagnostic delay of only one day. In a 

scenario that specifically targets infectious health 

workers (FHS), we use baseline assumptions for the 

general population but UTS assumptions for health 

workers. Moreover, one scenario investigates post-

mortem diagnosis (PMT), where we assume a 

relatively long delay of 9 days, and intermediate 

detection probabilities of p1=0.64 and p2=0.8; and one 

scenario investigates routine testing of all patients that 

are tested negative for malaria and bacteria, implying a 

delay of 3 days and detection probabilities of p1=0.8 

and p2=1.0. 

 

Ethics statement 
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Results 
Comparison of diagnostic interventions 

Figure 4 demonstrates that in an outbreak modeled 

after the one in Kikwit, adhering to the WHO/CDC 

[CDC] recommendation [6] of isolating patients who 

do not recover after a single round of chemotherapy 

for malaria and systemic bacterial infection can reduce 

outbreak size from a baseline median of 236 to a 

median of 24, using a conservative intervention that 

assumes a best case scenario in which the necessary 

drugs are available and quality-assured and that 

acquired antimicrobial resistance does not exist, and 

modeling the waiting time for the malaria and bacterial 

infection treatment as a 15-day delay before 

intervention. In most African hospitals medicine 

stock-outs and substandard drugs are occasional or 

even frequent occurrences. Additionally, febrile 

patients receive multiple chemotherapeutic courses 

because antimicrobial resistance is becoming more 

common and culture and susceptibility testing 

facilities are largely unavailable [8,30]. Recent 

information from African settings suggests that drug 

resistance in a febrile illness of bacterial origin can 

increase diagnostic delay to 30 days or longer [30]. 

Such extended delay in our model results in 

approximately a three-fold increase in VHF epidemic 

size if the basic WHO/CDC protocol is employed for 

detection and initiation of interventions (data not 

shown). On a positive note, routine rapid diagnostic 

malaria testing at all levels of the health system is 

currently being rolled out in multiple African countries 

and has been successfully implemented in Senegal 

[31]. We modeled a protocol that included routine 

rapid-diagnostic testing for malaria but no testing for 

any other febrile illnesses, reducing the delay to 8 

days. We observed a 40% reduction in VHF epidemic 

size below that seen with a 15-day delay in the CDC 

simulation (data not shown). 

When we used additional laboratory diagnostic 

testing to enhance VHF detection, we saw 

considerable reduction in outbreak size. As expected, 

the smallest outbreak sizes were obtained in the 

scenario where all hospitalized febrile patients are 

tested (UTS). This ‘Utopian’ model is used for febrile 

patients returning to Europe or North America from 

malaria/filovirus endemic areas and probably 

contributes to the fact that cases are exported but 

outbreaks are not. Because this protocol may be 

difficult to implement in remote district hospitals, 

where VHF outbreaks are most likely to occur, we 

evaluated scenarios in which non-molecular testing for 

more common confounding diagnoses was performed 

and/or only a subset of febrile patients were tested for 

VHFs. 

Figure 4 demonstrates that testing all febrile 

patients for common parasitic and bacterial infections 

(such as rapid diagnostic tests for malaria and blood 

culture for bacteria for example), and implementing 

WHO/CDC recommended containment for patients 

who tested negative (RT) produced VHF outbreak 

sizes that were somewhat larger than, but comparable 

to, the ‘Utopian’ (UTS) scenario. This option would 

make it possible for resource-limited hospitals to 

Figure 4. Outbreak sizes for different diagnostic scenarios. 
For each parameter set, 10000 stochastic simulations were 

performed. The bars show the 10%-90% quantiles and the 

median outbreak sizes, the cross shows the mean outbreak sizes. 

Only detected outbreaks were included – for our model 

parameters, a substantial fraction of outbreaks die out before 

being detected. The base line detection probability is 

approximately 0.006 per case, and is assumed to be the same for 

the general population and health workers. This leads to 

outbreaks with a median size of about 230 cases. Adhering to 

the minimal WHO/CDC recommendations for outbreak 

management in African settings can reduce outbreak sizes to a 

median of 24 cases (CDC). In an “utopian” scenario (UTS), 

where all febrile cases screened for VHF, and screening takes 

one day, (or, as more typically occurs in reality, are isolated 

until they are diagnosed or discharged) median outbreak size is 

reduced to a single case. Routine testing (RT), where febrile 

cases are initially tested for common parasitic and bacterial 

infections, and those patients with negative results are 

subsequently screened for VHF has compared to UTS a slightly 

increased median outbreak size of 3 cases, due to the additional 

delay from the initial test round. Outbreak sizes for febrile 

health worker testing (FHS), and post-mortem testing (PMT) 

fall between the outbreak sizes for the CDC scenario and RT 

scenario. The differences in outbreak sizes for the simulations 

shown here and in Fig 4 are statistically significant (t-tests on 

log-transformed outbreak sizes: p<0.001 for all pairwise 

comparisons.) 
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enhance the management and surveillance of malaria 

and common bacterial infections whilst 

simultaneously reducing diagnostic delay for VHF 

outbreaks. 

In the event that hospitals were unable to 

implement testing to this degree, we hypothesized that 

providing laboratory testing for health-workers who 

become febrile or post-mortem testing for febrile 

patients who did not recover in spite of chemotherapy 

would be another way to increase the chance that 

outbreaks are identified earlier and therefore are 

smaller. Health workers were selected as a potential 

sub-population for enhanced testing because their 

close contact with patients with VHF places them at 

increased risk for infection and opportunity to spread 

the disease within the hospital [8]. Mortality clusters 

have been instrumental for identifying outbreaks in the 

past [8,14,29,32,33]. Therefore we envisaged also that 

post-mortem identifications might occur more quickly 

if they were revealed by test results, before clustering 

became evident. As shown in Figure 4 both the febrile 

health worker testing [FHS] and post-mortem testing 

[PMT] interventions reduced outbreak size to levels 

below those seen with the minimal WHO/CDC [CDC] 

syndromic diagnosis recommendation, with slightly 

better results being seen with the FHS strategy. 

Not every institution that would choose to 

implement testing strategies such as those that have 

been modeled would be equipped to perform quality-

assured testing on-site. We therefore modeled the 

effect of additional delays that would result from using 

the same strategy with off-site testing at, for example, 

a regional laboratory serving multiple district health 

centers. Given that improved communications across 

Africa mean that results can be returned rapidly, if 

samples are routinely and regularly transported from 

the district health center to the testing facility, the 

delay afforded would be slight.  We allowed one day 

for febrile health worker testing and 3 days for 

postmortems, consistent with the time-to-detection 

from local off-site labs in actual Ebola outbreaks 

[22,33,34]. These delays resulted in only a small 

increase in outbreak size (Figure 5). Therefore, in the 

event that on-site testing is not possible, off-site 

testing should be considered. 

 

Impact of detection probability and diagnostic delay 

on simulation results 

Our simulation results depend on a number of 

parameters. While for those parameters that describe 

the dynamics of an outbreak (b1, b2, k and g), we rely 

on estimates from previous outbreaks, the parameters 

that characterize the diagnostic schemes (d1, d2, p1 and 

p2,) are chosen ad hoc. It is therefore of importance to 

analyze in more detail how these parameters determine 

outbreak sizes. 

For those scenarios that do not differentiate, in 

terms of detection probability, between the two sub-

populations (Ii.e p1≈p2=p and d1≈d2=d), the expected 

outbreak size at the point of time when the individual 

that is eventually diagnosed correctly enters the 

infectious compartment is given by 1/p. This means, 

for example, that in those scenarios where nearly 

every febrile case is tested for VHF's, the first 

infectious case will be detected. If 80% of potential 

cases are not evaluated, on average the fifth case will 

eventually be detected. The delay d determines how 

long it takes until this case is eventually diagnosed and 

interventions are implemented. During this time, the 

outbreak continues growing exponentially at a rate r 

determined by the disease-specific parameters b1, b2, g 

and k. For the Kikwit outbreak this growth rate has 

been estimated as r = 0.07 day-1, which implies a 

doubling time of the outbreak of about 10 days [28]. 

The outbreak size at the time of detection is therefore 

roughly given by p-1ed∙r; for the total outbreak size 

additional cases from post-intervention period have to 

be considered. The total number of cases depends on 

additional parameters such as those describing the 

effectiveness of the interventions. This means, 

roughly, that doubling the probability of detection 

reduces the size of the outbreak by factor 2 as does 

Figure 5. Impact of off-site vs. on-site testing. The scenarios 

are relatively robust to additional delays from off-site rather 

than on-site testing (one day for FHS and three days for PMT). 

Outbreak sizes increase only slightly, and are still below the 

outbreak sizes for the CDC scenario. 
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reducing the diagnostic delay by 10 days. Moreover, 

the effect of reducing the diagnostic delay depends on 

the growth rate of the outbreak. Reducing diagnostic 

delays has a stronger impact for faster growing 

outbreaks. 

 

Discussion 
While VHF outbreaks in Africa have not 

contributed to disease burdens to the degree seen with 

malaria, HIV or bacterial infections, they have 

typically been deadly, remote and unexpected [35]. 

Information from field epidemiology is critical for 

preventing and managing outbreaks, and mathematical 

models can augment information so derived without 

endangering lives or interfering with patient care. 

Chowell et al.’s initial SEIR model for Ebola [28] 

demonstrated that epidemiological interventions such 

as contact tracing and quarantines halved outbreak 

size. Legrand et al. [20] recently used a stochastic six-

compartment model to demonstrate that time to 

intervention is the most important parameter for 

epidemic control. It may not be cost-effective for 

resource-limited health systems to test every febrile 

patient in high-risk areas for Ebola, Marburg, Lassa 

and other viruses because hemorrhagic viral fever 

outbreaks are relatively rare and antiviral screening is 

costly. We therefore employed a model that allowed 

us to test diagnostic interventions in health workers, a 

high-risk sub-population and for post-mortems. 

Recognizing that diagnostic testing is currently not 

available to most African patients for a myriad of 

reasons [8,36-38], we focused on diagnostic 

interventions that could be feasibly introduced to 

resource-limited hospitals. 

We first modeled the impact from enhanced use of 

inexpensive laboratory tests for common bacterial and 

parasitic diseases that contribute significantly to the 

management of those conditions, and reduce selective 

pressure for resistance to antimalarial and antibacterial 

drugs. Our working hypothesis was that ruling out 

these infections in cases of VHF would identify 

outbreaks early, allowing WHO/CDC-recommended 

containment protocols to be implemented in a timely 

manner [6]. By implementing interventions in our 

modified SEIR model, we demonstrate that an 

unexpected increase in the number of febrile illness 

cases not attributable to malaria, typhoid or other 

endemic diseases, which would be identified by cheap 

tests, could form the basis of an early warning system 

that permits outbreak detection sooner than do 

increases in mortality rates [14]. Thus enhanced 

laboratory testing for common endemic diseases, such 

as malaria and bacterial infections, should help to 

contain uncommon VHF outbreaks. Nationwide 

rollout of malaria rapid diagnostic testing, which is in 

progress or strongly advocated for many countries, 

would have the added benefit of enhancing VHF 

detection. 

Secondly, we tested the hypothesis that thorough 

diagnostic work-up for febrile health workers, who are 

at greatest risk of contracting and spreading 

hemorrhagic viruses in hospitals, would further 

increase the chance that outbreaks are detected, and 

therefore contained, early. Investigation of a 1979 

Ebola outbreak in rural Sudan revealed that caregivers 

of Ebola patients had a 5.1-fold increased risk of 

contracting the disease [39]. In our model, we find that 

enhanced testing for health workers reduces outbreak 

size considerably. Focusing on health workers can 

significantly improve the trajectory of epidemics as 

well as the safety and morale of those who have the 

primary responsibility of care and containment 

[40,41].  Protecting health workers also ensures that 

there will be sufficient personnel to maintain infection 

control and attend to patients in on-going as well as 

future epidemics [15,42]. This intervention can also 

bring other benefits, including improved health worker 

morale, which would be valuable because African 

health workers have been justifiably reluctant to serve 

in some hemorrhagic viral outbreaks [16], and 

increased confidence in the allopathic health care 

systems as access to them, and their affordability, 

increases [15,21,35,43]. 

The third diagnostic testing intervention we 

evaluated was post-mortem testing. While the results 

of this intervention compared favorably with the 

febrile health worker-testing intervention, it may be 

harder to justify in part because benefits do not accrue 

to the infected. However it is possible that improved 

post-mortem testing would prevent burial-associated 

infections, which are not modeled in this study. 

Our study has a number of limitations. It is 

impossible to replicate all the uncertainty and nuances 

that accompany an infectious disease epidemic in a 

theoretical model. Moreover, data from African VHF 

outbreaks is scanty and of variable quality. The data 

used in this study were compiled towards the tail end 

of a devastating outbreak during which record keeping 

was very likely compromised. These limitations 

notwithstanding, the model permitted us to test 

hypotheses for scenarios that would be difficult to test 

in field studies for logistic as well as ethical reasons. 

The results demonstrate that although diagnostic tests 

are not used routinely for most African countries, 
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enhanced use, targeted use or both could aid in 

detecting outbreaks early and minimizing their size. 

The majority of patients in Africa with Ebola, 

Marburg or another VHF receive a clinical case 

diagnosis only, which is unreliable in the absence of 

epidemiological cues. WHO-recommended clinical 

case diagnoses for Ebola and Marburg VHFs require 

epidemiological connection to a confirmed case 

[44,45]. When laboratory testing is not performed, 

there are inevitably extended delays to initial outbreak 

identification.  MacNeil et al. [21] have recommended 

sensitive case surveillance and specific testing, the 

latter of which will assist in naming epidemics early 

and ensuring that filovirus-infected patients are 

segregated from other patients that are critically ill. 

This VHF contingency strategy requires boosting the 

epidemiological skills clinical laboratory infrastructure 

for VHFs in areas where diagnostic support is often 

sub-par for more common diseases [8,18,21,35]. 

Remote district facilities are least resourced but most 

vulnerable because these infections are zoonotic, with 

reservoirs that are less likely to be encountered in 

urban environments. A feasible approach to 

preemptively containing VHF outbreaks would be to 

implement VHF contingency plans that provide a 

simultaneous boost to priority areas for health care. 

As perhaps best illustrated by the outbreaks in 

Kikwit (1995), Gulu (2000), Uige (2005) and 

Bundibugyo (2007), already stretched health systems 

are invariably overwhelmed by large VHF outbreaks. 

All those outbreaks saw a loss of confidence in the 

hospitals that needed to manage and quarantine 

patients. This suggests that the advantages of early 

detection may be even greater than those predicted by 

the model. We did not model outbreaks due to the 

Lassa arenavirus, because few epidemiologic data are 

available and a different model, which addresses 

zoonotic transmission of this agent, would be 

essential, but the benefits of early diagnosis could be 

greater for Lassa fever-endemic areas in West Africa. 

There, Lassa fever infects many more people than all 

filoviruses combined and accounts for a considerable 

number of hospitalizations – up to 15% in highly 

endemic areas [46,47] –  and early treatment with the 

antiviral ribavarin significantly improves prognosis 

[48]. As ribavarin is costly, any diagnostic protocol 

that delineates presumptive Lassa fever cases from 

malaria will help to target its use. Preventing person-

to-person transmission of Lassa fever virus, which has 

been repeatedly documented in health care settings 

[7,8,32], by early detection could be crucial to 

preventing additional infections. 

The best explanation for the drastic reduction in 

epidemic size derived from early detection is that the 

outbreak is contained before or soon after the first 

round of person-to-person transmission. The risk of 

person-to-person transmission is very high in African 

hospitals because febrile patients are not isolated. It is 

however low once enhanced barrier protocols are 

instituted following identification of a VHF outbreak. 

The chance that multiple person-to-person rounds of 

infection will occur is increased by diagnostic delay. 

We fully support that improved infection control will 

have a positive impact on the number and size of VHF 

epidemics associated with hospitals. Our findings 

suggest that reducing diagnostic delay through realistic 

diagnostic protocols that involve enhanced laboratory 

testing for common endemic diseases, hemorrhagic 

viruses or both could help determine when more 

expensive heightened control is required, thereby 

providing added protection for resource-limited 

African district hospitals when they need it most. 

 

Conclusions 
African VHFs are among the most lethal but least 

studied viral infections of humans. We sought to 

evaluate strategies for containing outbreak size in 

resource-limited settings and hypothesized that this 

could be accomplished by routine and judicious use of 

laboratory diagnostics. Our SEIR model allows us to 

describe the dynamics for hospital staff separately 

from that for the general population, and to implement 

health worker-specific interventions. As a result, we 

have measured the impact of targeting laboratory 

diagnostics at highly informative sub-populations. Our 

results demonstrate that in addition to improving the 

quality of care for common causes of febrile 

infections, increased and strategic use of laboratory 

diagnostics for fever could reduce the chance of 

hospital amplification of VHFs in resource-limited 

African health systems. 
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