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Bacterial drug resistance is a growing concern 

around the globe. The indiscriminate use of antibiotics 

in many parts of the world for decades has helped 

bacteria to acquire resistance against commonly used 

antibiotics. This situation is worsened further due to 

transfer of resistance gene(s) within bacteria, promoting 

the rise of multidrug resistant bacterial strains. 

Multidrug resistance in Pseudomonas aeruginosa is 

also a growing concern. This bacterium is considered as 

an opportunistic human pathogen and known to infect 

patients with suppressed immunity. Pseudomonas can 

grow in a wide variety of hosts, ranging from plants to 

animals [1,2]. It is also found in wetlands, soil, and 

marine environments, and its ability to acquire 

resistance against antibiotics and disinfectants makes P. 

aeruginosa different from other bacteria [3]. Several 

hundreds of people die each year due to Pseudomonas 

infection. In most cases, this nosocomial pathogen is 

responsible for the death of cystic fibrosis patients. 

P. aeruginosa has a comparatively large genome of 

6.3 million bases that encodes 5570 proteins [3]. Large 

genetic diversity enhances P. aeruginosa ability to gain 

resistance against antibiotics quickly and even during 

the treatment. Several P. aeruginosa clinical isolates 

are resistant to different classes of antibiotics, for 

example, β-lactams, fluoroquinolones, and 

aminoglycosides [4,5]. Resistance to β-lactam and 

aminoglycoside classes of antibiotics is due to the 

import of genetic material, whereas resistance to 

fluoroquinolones is linked to mutations [4]. P. 

aeruginosa acquires resistance against antibiotics either 

by modification of the target or overexpression of the 

efflux pump or alteration of the membrane permeability 

[6,7]. 

Multidrug resistant bacterial infections pose a 

significant challenge in the treatment of patients. 

Currently, we are left with few treatment options. The 

reduced arsenal of antibiotics is pushing us to a post-

antibiotic era. The long discovery time and a huge 

development-associated cost limit the discovery of new 

antibacterial compounds. The majority of effective 

antibiotics are derivatives of earlier discovered 

antibiotics. We are in need of new classes of antibiotics 

with novel mechanism of action. 

About one and a half decade ago, oligomers of 

Peptide Nucleic Acid (PNA) were first introduced as 

antibacterial agents, and studies showed that these 

antibacterial PNA molecules are capable of inhibiting 

the growth of outer-membrane defective E. coli strain 

[8,9]. Years later, a separate study exhibited that PNA 

oligomer in conjugation with KFFKFFKFFK peptide is 

also able to inhibit the growth of wild type E. coli strain 

[10]. Since then, numerous studies have reported the 

antibacterial activity of peptide-PNA conjugates in 

different bacterial strains, Campylobacter jejuni, 

Staphylococcus aureus, Mycobacterium smegmatis, 

Brucella suis, Pseudomonas aeruginosa, Klebsiella 

pneumonia, E. coli, Shigella flexneri, and Streptococcus 

pyogenes [11–20]. 

PNA is a synthetic molecule that mimics the 

structure of DNA. Synthesis of PNA oligomers follows 

a simple chemical approach, which has been well 

described in the literature [21]. Inside the cell, these 

antibacterial PNA oligomers function as antisense 

molecules and initiate inhibition of translation either by 

blocking the movement of ribosomes along the mRNA 

or disrupting the assembly of ribosome around the 

translation start site. The interaction between the PNA 
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oligomer and mRNA is reversible and governed by 

hydrogen bonds. Designing PNA oligomers is 

relatively straightforward, but it requires a systematic 

search to identify the optimal target region on the 

mRNA in order to achieve maximum inhibition of gene 

expression. Generally, the area around the translation 

start site  ̶ 20 nucleotides up- and downstream  ̶  is 

optimal for designing antibacterial PNA molecules 

[15]. However, factors such as RNA secondary 

structure and association of RNA-binding proteins with 

RNA, could make the designing of antibacterial PNA 

oligomers challenging. Regions other than the one 

around the translation start site could also be important 

for antibacterial PNA design. In the study by Ghosal et 

al. [15], antibacterial molecules were designed through 

steps that involve identification of target, scanning of 

regions on mRNA, characterization of PNA oligomers 

length, and, lastly, validation of carrier peptides. These 

steps described in detail in the literature [10]. 

Four antibacterial peptide-PNA conjugates were 

discovered and developed in the study by Ghosal et al. 

[15]. These molecules efficiently inhibit P. aeruginosa 

growth at low micromolar concentrations and are 

effective against three strains of P. aeruginosa, namely, 

PA01 (a commonly used laboratory stain), PA14 (a 

highly virulent strain) and LESB58 (a clinical isolate 

from a cystic fibrosis patient). Two of these four 

molecules, target the mRNA of acpP gene. The target 

region of anti-acpP PNA is conserved in a range of 

species of Pseudomonas, highlighting the potential 

antibacterial application of anti-acpP conjugates in 

other Pseudomonas  species. 

PNA is a synthetic molecule and not found in any 

living systems, while number of commonly used 

antibiotics are natural in origin. Therefore, it is likely 

that in the course of evolution, bacteria may not have a 

chance to encounter PNA molecules, so one could 

assume that gaining resistance against PNA molecules 

will be difficult for bacteria.    

Furthermore, the selective killing of pathogenic 

bacteria is a big challenge. The majority of antibiotics 

negatively affects the host-associated beneficial 

bacterial community. Designing of bacterial-specific 

antibiotics is significantly challenging while it is 

relatively simpler using the PNA-based approach. The 

delivery of antibacterial PNA molecules can be 

achieved by designing of bacterial-specific vehicles. 

Several peptides, such as (KFF)3K, (R-Ahx-R)4-Ahx-

βala, (R-Ahx)6-βala, 

YARVRRRGPRGYARVRRRGPRRC, and 

RFFRFFRFFRXB, are known for delivering antisense 

PNA or Morpholino oligomers in bacteria 

[10,15,22,23]. In addition to their structural and/or 

sequence dissimilarity, these peptides may also differ in 

their uptake in bacteria.  

Certain modifications can also alter the entry of 

peptide-PNA conjugates in bacteria. For instance, the 

addition of a cleavable linker, -F-Gly-eg1- or -FFK-

eg1-, between peptide and PNA oligomer allows PNA 

oligomer to separate from the conjugated peptide in the 

bacterial periplasm [17]. Additionally, a study on E. 

coli highlighted that the L form of (KFF)3K peptide 

degrades in periplasm while H-D((KFF)3K), (R-Ahx-

R)4-Ahx-βala and (R-Ahx)6-βala peptides remain 

attached to the PNA oligomer and assist delivery of 

PNA oligomers to the bacterial cytoplasm [17]. 

Moreover, the uptake of these cell permeable peptides 

varies among bacteria, for example, (KFF)3K peptide 

transports PNA oligomer efficiently in E. coli but not in 

P. aeruginosa [15].  

It is equally important that these delivery peptides 

remain stable and effective in the mammalian system. 

It has been shown that PNA or Morpholino antisense 

oligomers in conjugation with (KFF)3K, (RX)6B-, 

(RXR)4XB-, and (RFR)4XB peptides are able to 

eliminate bacterial infection in mice [18,24–26]. 

Furthermore, it is also possible that the peptides which 

efficiently transport PNA oligomers in mammalian 

cells may also be capable of transporting PNA 

oligomers in bacteria [27, 28]. 

Additionally, antisense PNA oligomers could also 

be used for studying gene function in bacteria. 

Following observations strongly highlight that the 

development of PNA antibiotics could be an alternative 

approach to control multidrug resistance bacterial 

infections. 
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