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Abstract 
Introduction: Currently available tests have limitations for the identification of Brucella species and strains, and their genetic lineage. The 

genome sequence of the rpoB gene encoding the β-subunit of DNA-dependent RNA polymerase was investigated for its use in genotyping 

Brucella melitensis. 

Methodology: Complete rpoB gene sequences of globally distributed Brucella melitensis strains were analyzed. Single nucleotides 

polymorphisms (SNPs) of the rpoB gene sequences were identified and used to type Brucella melitensis strains. 

Results: Six DNA polymorphisms were identified, of which two (nucleotides 3201 and 558) were novel. Analysis of the geographical 

distribution of the strains revealed a spatial clustering pattern with rpoB type 1 representing European and American strains, rpoB type 2 

representing European, African, and Asian strains, rpoB type 3 representing Mediterranean strains, and rpoB type 4 representing African 

(C3201T) and European (C3201T/T558A) strains.  

Conclusions: We report the discovery of two novel SNPs of rpoB gene that can serve as useful markers for epidemiology and geographical 

tracking of B. melitensis.  
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Introduction 
Brucella spp. is small Gram-negative coccobacillus 

that lives as a facultative intracellular pathogen in the 

host. It is the causative agent of brucellosis, which 

primarily affects livestock and wildlife [1]. Infection in 

animals causes abortion, low milk production, and 

stillbirth, affecting the output of animal husbandry and 

leading to economic losses [2]. Humans usually acquire 

the infection through contact with infected animals or 

by ingestion of unpasteurized dairy products. Human 

infection can result in a chronic debilitating disease 

with non-specific symptoms affecting multiple organs 

[3,4]. 

Brucella spp. is a category B potential biological 

warfare agent that can be transmitted through aerosols 

[5]. Rapid detection and precise identification of 

Brucella spp. is, therefore, essential to determine the 

possible native geographical and host origins. 

Diagnostics and identification of brucellosis based on 

biochemical tests are inadequate for the differentiation 

of Brucella spp. In a clinical setting, general 

identification of Brucella spp. can be performed using 

16s rRNA gene sequencing. The method however, is 

still inadequate for differential identification of 

Brucella species and strains important for the 

determination of the origin of the infection. 

Owing to the high genomic similarity among the 

Brucella spp., identification methods that target 

multiple genes, including multi-locus variable-number 

tandem-repeat analysis and multilocus sequencing, 

have been developed [6-8]. In the meantime, use of the 

rpoB gene sequence for bacteria identification, 

especially between closely related species, has been 

reported [9]. Thus far, this approach demonstrated high 

sensitivity in differentiating Brucella spp. down to their 

genotype through single-gene sequencing prodecure 

[10,11]. In the present study, we explore the use of the 

rpoB gene to study intraspecies variation on a large set 

of diverse B. melitensis strains collected globally. 
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Methodology 
Two Brucella melitensis strains isolated in 

Malaysia, namely MY/2009/1483 and 

BM/Phil/2012/1136, were previously recovered from 

brucellosis patients who had consumed unpasteurized 

cow milk in Malaysia and goat milk in the Philippines, 

respectively [12]. Complete sequences of the rpoB gene 

were retrieved from draft genomes of previously 

reported isolates [12]. 

The rpoB gene sequences of other global B. 

melitensis strains were retrieved from the GenBank and 

the PATRIC databases [13]. Complete rpoB gene 

sequences from 56 globally distributed B. melitensis 

strains, including two human B. melitensis MY1483/09 

(accession number: PRJEB7499) [14] and Phil1136/12 

(accession number: PRJEB7504), were aligned. SNPs 

from the sequence alignment were identified and 

compared. For phylogenetic analysis, multiple 

sequence alignments of the 56 rpoB gene sequences 

from B. melitensis and two from B. abortus (as 

outgroups) were carried out using ClustalW 2.0.12 [15]. 

The phylogenetic tree of the rpoB genes was 

constructed using MrBayes v3.2.1 [16]. Bayesian 

MCMC analysis was conducted by sampling across the 

entire general time reversible (GTR) model space. One 

million generations were run with a sampling frequency 

of 500, and diagnostics were calculated for every 5,000 

generations. A burn-in setting of 25% was used to 

discard the first 500 trees. Convergence was assessed 

manually, with the standard deviation of split 

frequencies falling below 0.01. There was no obvious 

trend for the plot of the generation versus the log 

probability of the data (the log likelihood values), and 

the potential scale reduction factor (PSRF) was 

reasonably close to 1.0 for all parameters. The 

discriminatory power of the rpoB typing method was 

calculated as described previously [17] and 

implemented in insilico.ehu.eus 

(http://insilico.ehu.es/mini_tools/discriminatory_powe

r/index.php) [18]. 

 

Results 
Nucleotide differences in the B. melitensis rpoB 

gene variants are shown in Table 1. Using B. melitensis 

16M as reference, six DNA polymorphisms were 

observed, two of which were novel (Table 1). The first 

novel DNA polymorphism, located at residue 3201, 

involved C to T substitution. It was present in most of 

the African isolates in the study and in one B. melitensis 

strain (UK22_04.201744) collected in the UK. This 

polymorphism enabled the segregation of 3201T-B. 

melitensis strains from other B. melitensis strains (rpoB 

types 1, 2 and 3). Isolates with the 3201T SNP are 

designated as rpoB type 4 in the present study. Within 

the rpoB type 4 isolates, an additional SNP at residue 

558, T to A was observed exclusively in the 

UK22_04.201744 strain. 

  

Figure 1. Geographical distribution of B. melitensis strains according to rpoB typing. 
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  Table 1. Nucleotide in the rpoB of 56 B. melitensis strains used in this study.  

Isolates rpoB type subtype Country Continent 

Single nucleotide polymorphisms* 

      
 1 2 3 3 3 

5 8 9 2 7 9 

5 8 5 0 4 2 

8 6 4 1 7 7 

16M 1 - USA North America T C C C G G 

bv1strRev1 1 - Mexico North America . . . . . . 

bv1str16M 1 1 - USA North America . . . . . . 

CNGB1076 1 - Argentina: San Juan South America . . . . . . 

CNGB1120 1 - Argentina: Buenos Aires South America . . . . . . 

CNGB290 1 - Argentina: Jujuy South America . . . . . . 

F10 05 2 1 - Portugal Europe . . . . . . 

B115 1 - Malta Europe . . . . . . 

F3 02 1 - Norway Europe . . . . . . 

ADMAS-G1 1 - India Asia . . . . . . 

UK3 06 2 a Cyprus Europe . . . . . A 

F8 01 155 2 b Kosovo Europe . T . . . A 

F9 05 2 b Turkey Asia . T . . . A 

UK22 06 2 b Somalia Africa . T . . . A 

UK37 05 2 b UK Europe . T . . . A 

UK29 05 2 b UK Europe . T . . . A 

11-1823-3434 2 b Unknown Unknown . T . . . A 

F10 06 16 2 c Thailand Asia . T T . . A 

MY/2009/1483 2 c Malaysia Asia . T T . . A 

BM/Phil/2012/1136 2 c Philippines Asia . T T . . A 

66 59 2 c India Asia . T T . . A 

bv2str63 9 2 c India Asia . T T . . A 

ATCC23457 2 c India Asia . T T . . A 

BM IND-1 2 c India Asia . T T . . A 

F6 05 6 2 c Sudan Africa . T T . . A 

BG2 S27 2 c Pakistan Asia . T T . . A 

F2 06 6 2 c Portugal Europe . T T . . A 

NI.158853 2 c Inner Mongolia Asia . T T . . A 

M5 10 2 c China Asia . T T . . A 

bv1str16M 2 2 c China Asia . T T . . A 

bv1strM28 12 2 c China Asia . T T . . A 

16M1W 2 c China Asia . T T . . A 

bv1strM111 2 c China Asia . T T . . A 

bv1strBCB028 2 c China Asia . T T . . A 

bv1strBCB033 2 c China Asia . T T . . A 

bv1str133 2 c China Asia . T T . . A 

bv3str128 2 c China Asia . T T . . A 

bv1strM5 2 c China Asia . T T . . A 

M5 2 c China Asia . T T . . A 

M5 90 2 c China Asia . T T . . A 

M28 2 c China Asia . T T . . A 

548 2 c Russia: Saratov region Asia . T T . . A 

C-554 2 c Russia: Republic of Dagestan Asia . T T . . A 

C-555 2 c Russia: Republic of Dagestan Asia . T T . . A 

C-558 2 c Russia: Republic of Dagestan Asia . T T . . A 

02-7258 2 c Unknown Unknown . T T . . A 

UK31 99 3 - Egypt Africa . . . . A . 

bv3strEther 3 - Italy Europe . . . . A . 

F15 06 7 3 - Italy: Sicily Europe . . . . A . 

F5 07 239A 3 - Sicily Europe . . . . A . 

F1 06 B10 4 a Zimbabwe Africa . . . T . . 

UK24 06 4 a Nigeria Africa . . . T . . 

UK19 04 4 a Somalia Africa . . . T . . 

UK14 06 4 a Somalia Africa . . . T . . 

UK23 06 4 a UK (Somalia) Africa . . . T . . 

UK22 04 4 b UK Europe A . . T . . 

*Nucleotide position based on 16M genome 
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By incorporating geographical data (Figure 1), 

rpoB type 1 corresponded to strains collected from 

European and American countries, while rpoB type 2 

comprised strains collected from Europe, Africa, and 

Asia. Both the Malaysian isolates used in this study 

were included in this group. Within the rpoB type 2 

group, a few variants possessed only one or two unique 

type-2 SNPs out of the three (at codon 629, 985, and 

1309). The UK3_06.201748 strain isolated in Cyprus 

was the only isolate to have a single SNP of rpoB type 

2 at codon 1309. The strain was designated subtype a. 

The second rpoB type 2 variant possessing two SNPs 

located at codons 629 and 1309 was designated subtype 

b. These variants comprised strains from diverse 

geographical locations including Kosovo, Turkey, 

Somalia, and the United Kingdom. The remaining 

isolates, designated subtype c, possessed all three SNPs 

unique to rpoB type 2. The rpoB type 3 strain 

corresponded to isolates collected from Mediterranean 

region, Egypt, and Italy. Finally, rpoB type 4, which 

was newly coined in the present study, encompassed 

isolates collected from Africa (subtype a) and the 

United Kingdom (subtype b). 

The phylogenetic analysis of the rpoB gene 

revealed a grouping similar to that proposed above. All 

the B. melitensis strains were segregated into four major 

groups (Figure 2) that corresponded well with the rpoB 

types assigned in the current study. The phylogenetic 

tree was first delineated into two major groups that 

corresponded to rpoB type 2 and rpoB types 1/3/4. The 

rpoB type 2 was then further delineated into three sub-

groups that corresponded well with rpoB type 2 

subtypes a, b, and c. The group that corresponded with 

rpoB types 1/3/4 was further delineated into 3 sub-

groups: rpoB type 1 (yellow), rpoB type 3 (green), and 

rpoB type 4 (blue). The discriminatory power of this 

rpoB typing method was 0.6917. 

 

Discussion 
Analysis of the complete rpoB gene sequence of 

globally diverse B. melitensis isolates revealed the 

existence of four distinct groups within the species. 

Here, we report, for the first time, a new SNP at residue 

3201 within the B. melitensis species which functions 

as a canonical SNP to allow the delineation of B. 

melitensis rpoB type 4 strains corresponding to African 

strains that have not been previously well studied. One 

isolate with an additional SNP at residue 558 from the 

United Kingdom was grouped within rpoB type 4. Our 

study suggests that the SNP at residue 3201 could be an 

adaptation of B. melitensis after its introduction into 

Africa. It accumulated in the ancestral genome of the 

African lineage before subsequently spreading within 

the African continent. The nucleotide change at residue 

558 might possibly represent a canonical SNP that 

defines the European B. melitensis of African origin. 

Nevertheless, it remains inconclusive whether the SNP 

at residue 558 is geographically informative, as more 

isolates are required to enable a better segregation 

analysis. 

A previous study assigned the strains of rpoB type 

2 according to three SNPs [10]. With the current 

analysis, we note that the acquisition of the three 

nucleotide polymorphisms in the rpoB gene by type 2 

strains reflects the evolution of this strain. The UK3_06 

isolated from Cyprus was the only strain from this study 

that displayed one out of three SNPs specific for rpoB 

type 2 B. melitensis, whereas the strains characterized 

Figure 2. Phylogenetic tree of rpoB gene sequences from B. melitensis isolates. 
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by two of the three SNPs had diverse geographical 

distributions, including Kosovo, Turkey, Somalia, and 

the United Kingdom. The co-circulation of the rpoB 

type 2 strains with two and three SNPs in Turkey [11] 

suggests that the B. melitensis strains (with two SNPs) 

could have persisted for a period of time in Turkey, thus 

allowing the accumulation of the third SNP (2954T) 

before spreading into other Asian countries. 

 

Conclusions 
In summary, our findings show a high degree of 

rpoB gene similarity among B. melitensis isolated from 

geographically closely related regions. Identification of 

SNPs in the rpoB gene allows rapid monitoring of the 

transcontinental spread of the B. melitensis strains. The 

rpoB gene could, therefore, serve as an alternative 

marker for differentiation and geographical 

identification of B. melitensis strains. 
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