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Abstract 
Mycobacterium tuberculosis (M.tb) is the causative agent of tuberculosis (TB), an infectious disease that leads to numerous deaths worldwide. 
Malnutrition, smoking, alcohol abuse, Human Immunodeficiency Virus infection, and diabetes are some of the most important risk factors 
associated with TB development. At present, it is necessary to conduct studies on risk factors to establish new effective strategies and combat 
this disease. Malnutrition has been established as a risk factor since several years ago; although there is in vitro experimental evidence that 
reveals the importance of micronutrients in activating the immune response against M.tb, evidence from clinical trials is controversial. 
Currently, nutritional assessment is recommended in all TB patients upon diagnosis. However, there is insufficient evidence to indicate 
micronutrient supplementation as adjuvant therapy or prophylactic to prevent micronutrient depletion. Strengthening the interaction between 
basic and clinical research is necessary to carry out studies that will help establish adjuvant therapies to improve outcomes in TB patients. In 
this review, we discuss the experimental evidence, provided by basic research, regarding micronutrients in the TB field. However, when these 
studies are applied to clinical trials, the data are inconsistent, indicating that still missing mechanisms are necessary to propose alternatives to 
the treatment of TB patients. 
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Introduction 

Tuberculosis (TB) is an infectious disease caused 
mainly by the bacillus Mycobacterium tuberculosis 
(M.tb); although a low frequency of TB case is caused 
by Mycobacterium bovis, usually through a close 
contact with infected animals [1]. The World Health 
Organization (WHO) estimated that in 2018, there were 
10 million TB patients and 1.2 million TB deaths. Some 
risk factors associated with the development of TB are 
human immunodeficiency virus (HIV) co-infection, 
malnutrition, smoking, diabetes mellitus (DM), and 
alcoholism. An estimated 2.3 million TB cases were 
attributed to malnutrition, which is above those 
attributed to HIV (0.81 million) and DM (0.36 million); 
thus, national efforts should be prioritized to identify 
TB patients and reduce TB incidence [2]. TB treatment 
depends on the susceptibility of M.tb strains to drugs. 
The first-line anti-TB drugs in susceptible cases are 

rifampicin, isoniazid, pyrazinamide, and ethambutol for 
two months, followed by isoniazid and rifampicin for 
four months, however, when the M.tb strain is resistant 
to rifampicin and isoniazid (MDR-TB), second-line 
drugs are required and administered for 18 to 20 
months, and these drugs have more toxicity in 
comparison with drug-susceptible tuberculosis [3]. The 
predominant form is the susceptible TB (10 million 
worldwide) but unfortunately, taken the OMS data as 
reference, in 2018 was estimated there were about half 
a million persons worldwide developed TB resistant to 
rifampicin and resistant both rifampicin and isoniazid, 
thus the resistant TB form is in continually growing [2]. 
Interestingly, malnutrition in MDR-TB patients is 
associated with a higher mortality rate [4]. Considering 
the numbers of TB cases and disease incidence, it is 
urgent to find new strategies and therapies to shorten 
and optimize the TB treatment (especially in MDR), 
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and not least important is to reduce the risk of 
reactivation in latent TB. After M.tb arrives at the lung, 
the host activates an immune response to avoid the 
disease, but it is insufficient to eliminate the bacillus. 
Mostly, people maintain a latent infection state (latent 
TB) during their lifetime. WHO data indicate that 1.7 
billion people globally have latent TB, and 5–15% of 
them will experience TB reactivation [5]. The principal 
factors associated with TB reactivation are HIV 
infection, anti-tumor necrosis factor (TNF) therapy, 
silicosis therapy, DM, and malnutrition [6-9]. Macro- 
and micronutrients are essential to the enhanced 
immune response against various pathogens, including 
M.tb. However, the molecular mechanism by which 
nutritional status triggers the immune response has not 
been fully elucidated. Malnutrition is a state of nutrition 
characterised by a deficiency in nutrients. The clinical 
presentation of malnutrition is diverse, and different 
diagnosis criteria are reported in the literature [10-12]. 
In this review, malnutrition refers to a condition that 
includes wasting (low weight-to-height ratio), body 
mass index (BMI, kg/m2) < 18.5 in adults, and 
micronutrient deficiencies. In 2019, the State of Food 
Security and Nutrition in the World report showed an 
estimated 821.6 million hungry people (one in every 
nine people in the world), that is mainly distributed as 
513.9 million in Asia, 256.1 million in Africa, and 42.5 
million in Latin America and the Caribbean, thus, the 
new report in comparison to the previous report, is 

showing that the prevalence of malnutrition is slowly 
increasing [13]. Taking data from the previous report, 
we showed in Table 1 the number of undernourished 
people in the world during 2017 and 2018. This 
information provides an overview of the severe 
problem of malnutrition worldwide. In Mexico, 
epidemiological reports are alarming because 54% of 
Mexicans are living in poverty and 9.4 million in 
extreme poverty; consequently, they are more 
susceptible to malnutrition. In 2017, the United Nations 
Children's Fund reported that 51% of children in 
Mexico are living in poverty, and 2 in every ten children 
under the age of 5 are malnourished [14,15]. The main 
aim of this review is to discuss the experimental 
evidence generated from both in vitro and in vivo 
models, where the relevance of micronutrients in the 
anti-mycobacterial immune response is shown, and 
how it is in contrast to evidence from clinical trials. This 
knowledge is essential to achieve the eradication of TB, 
mainly in developing countries where there is a 
significant percentage of people who are at risk of 
developing TB because of malnutrition. 

 
Immune response: from primary infection to latent TB 

M.tb enters the host via the respiratory tract. Once 
in the alveolus, the bacillus is phagocytosed by the 
alveolar macrophage. This process is mediated by 
receptors, such as dectin 1 or 2, macrophage-inducible 
C-type lectin (Mincle), dendritic cell-specific ICAM-3-
grabbing nonintegrin (DC-SIGN), and the mannose 
receptor [16-18]. Once in the cytoplasm, M.tb can 
activate evasion mechanisms of the immune response; 
one of the most useful is the inhibition of the fusion of 
the phagosome with lysosomes to promote its 
intracellular survival even under hostile conditions 
[19]. Circulating monocytes have been established as 
the main precursor of the alveolar macrophage. It was 
previously found that monocytes from TB patients 
exhibit mitochondrial damage, and they are more 
susceptible to cell death, suggesting that these cells may 
give rise to nonfunctional macrophages [20,21].  

At the pulmonary parenchyma, M.tb induces the 
recruitment of immune cells at the infection site to form 
a highly organized cell structure called granuloma, 
where each cell subpopulation has specific functions. 
For example, dendritic cells and macrophages carry the 
bacilli to lymph nodes to activate the adaptive immune 
response [22]. Monocytes migrate from blood vessels 
to the lung mainly by CCL2-dependent signalling; they 
are differentiated into macrophages and specialized 
cells, such as epithelioid cells and multinucleated giant 
cells (Figure 1A) [23]. However, the bacilli can release 

Table 1. Undernourished people in the world during 2017 and 
2018. 

World 2017 2018 
Africa 248.6 256.1 
Northern Africa 16.5 17.0 
Sub-Saharan Africa 232.1 239.1 
Eastern Africa 129.8 133.1 
Middle Africa 43.2 44.6 
Southern Africa 5.4 5.3 
Western Africa 53.7 56.1 
Asia 512.4 513.9 
Central Asia 4.0 4.1 
Eastern Asia 138.1 137.0 
South-eastern Asia 61.1 60.6 
Southern Asia 276.4 278.5 
Western Asia 32.7 33.7 
Western Asia and Northern Africa 49.2 50.6 
Latin America and the Caribbean 41.7 42.5 
Caribbean 7.7 7.8 
Latin America 34.0 34.7 
Central America 10.7 11.0 
South America 23.2 23.7 
Oceania 2.5 2.6 

The number indicates millions of hungry people in the word during the 
years 2017 and 2018, and data is distributed by region and subregion. 
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virulence factors in the granuloma to limit cell 
differentiation. For example, our group has shown that 
lipoarabinomannan (LAM), a glycolipid inserted in the 
mycobacterial cell wall, induces the differentiation of 
monocytes into immature macrophages that are unable 
to restrict mycobacterial growth [24]. Once the bacillus 
is phagocytized and degraded, the peptides are 
presented through specialized molecules to activate T 
lymphocytes, posteriorly, T cells secrete cytokines and 
chemokines that are needed to activate and recruit other 
cell populations (Figure 1B). The granuloma has a 
caseous center rich in lipids and eicosanoids (e.g., 
leukotriene B4), antimicrobial peptides (e.g., 
cathelicidins), reactive oxygen species, and residual 
amounts of bacilli. Moreover, whereas in the granuloma 
center is predominate the pro-inflammatory proteins, in 
the periphery, the anti-inflammatory proteins are 

predominate, suggesting that immune mechanisms 
coexist to regulate the granuloma structure [25]. 
Surrounding the granuloma center, there are layers of 
myeloid cells and T and B lymphocytes, which are 
recruited primarily by CXCL9-CXCL11/CXCR3 and 
CXCL13/CXCR5 chemokine axe (Figure 1C) [26]. 
CD4+ T cells produce TNF and IFNγ, which are 
cytokines that promote and maintain the granuloma 
formation, whereas B lymphocytes and regulatory T 
(Treg) cells produce IL-10 and TGF-β to induce the 
negative regulation of the immune response [27,28]. 
Interestingly, it has been reported that each granuloma, 
even from the same host, behaves independently with 
variabilities in the protection and control of 
mycobacteria [29]. The complexity in the granuloma 
formation dynamics still has several open questions, 
and clarifying them would provide invaluable 

Figure 1. Immune response and formation of granuloma during M.tb infection. 

After the bacillus enters the pulmonary parenchyma: (A) It has contact with innate immune system cells located at the site of infection, which release various 
chemokines, such as CCL2. The pro-inflammatory monocytes of the bloodstream express CCR2 and perform an extravasation process in response to the 
CCL2. The monocytes differentiate into macrophages and, subsequently, some of them will give rise to other specialized cells, such as foamy macrophages 
or multinucleated giant cells. (B) Macrophages degrade the bacillus and present mycobacterial antigens to CD4+ T cells, which are differentiated mainly 
from a pro-inflammatory profile Th1. The CD4+ T cells mainly produce IFNγ, TNF, and IL1β and help recruit more cell populations. (C) Finally, a highly 
organised cell structure known as a granuloma is formed, which has a home center rich in reactive oxygen species, lipids, eicosanoids, and a residual amount 
of bacilli. This is surrounded by uninfected macrophages (which limit mycobacterial growth and contribute to cytokine secretion) and foamy macrophages 
(which accumulate lipids and lose their phagocytic ability). Finally, there are various layers of lymphoid cells (subpopulations of T, B, and NK lymphocytes) 
that release pro-inflammatory chemokines and cytokines such as TNF, the main cytokine that maintains the structure of the granuloma. There is also the 
presence of regulatory cells that produce IL-10 and TGFβ. Figure was done using BioRender software. 
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information for the development of therapies aimed at 
maintaining the granuloma structure and avoiding TB 
reactivation. 

 
Immune response: from latent TB to active TB 

Granuloma integrity could be disrupted in response 
to a bacillar charge increased inside the caseous center 
or immunodeficiencies in the host, which promote the 
spread of the and, consequently, an active TB [30]. M.tb 
induces the death of infected macrophages mainly by 
necrosis, favouring the release of the bacilli into the 
pulmonary parenchyma [31]. TB reactivation is related 
to immunosuppression factors in the host, such as HIV 
infection, malnutrition, and the use of anti-TNF therapy 
(Figure 2 A-C). TNF is one of the central regulators of 
the immune response in mycobacterial infections, not 
only from the perspective of its classic pro-
inflammatory function but also, the transmembrane 
form of TNF is indispensable in activating suppressive 
cells and controlling exacerbated inflammatory 
processes [32-34]. Lipids were also described as one of 
the leading players in TB reactivation because M.tb 
uses the host cholesterol and lipid bodies of the foamy 
macrophage to maintain chronic infection [35]. 
Epidemiological studies indicate that malnutrition is 
one of the most important risk factors for TB 
reactivation. However, the specific alterations in the 

granuloma induced by malnutrition have not been 
completely clarified. Rahman et al. showed that 
granulomatous lesions from chronic pulmonary TB 
patients with vitamin D deficiency had reduced levels 
of antimicrobial peptides, such as cathelicidins (LL-37), 
in comparison with distal lesions of the lung 
parenchyma, suggesting that vitamin deficiency 
compromises an adequate cellular immune response 
specifically in granulomatous lesions [36]. 

 
Malnutrition and tuberculosis 

Micronutrients are essential elements in the diet, 
which are needed for multiple physiological processes, 
such as energy production, immune responses, and 
other functions. The most studied micronutrients in the 
context of TB are vitamin A, vitamin D, and zinc. In 
this review, we discuss the experimental evidence that 
has led to clinical trials on these micronutrients. TB 
patients frequently exhibit weight loss, or they are 
malnourished owing to suboptimal protein intake, 
muscle catabolism induced by inflammation during 
infection, and gastrointestinal symptoms induced by 
acute-phase proteins, such high TNF levels [37]. 
Optimal micronutrient concentrations are critical 
because low vitamin A and D concentrations in HIV+ 
patients have been associated with an increased risk 
(2.6–4.3 times) of developing TB [38]. 

Figure 2. Factors associated with reactivation of M. tuberculosis infection. 

(A) In primary M.tb infection, efficient immune response is activated, a granuloma is formed for infection control, and a latent TB state is consequently 
generated. (B) The presence of factors, such as anti-TNF therapy, HIV infection, and malnutrition, affects the immune response that limits bacterial growth. 
(C) The alteration of the immune response disrupts the granuloma and favours the spread of the M.tb bacilli. Figure was done using BioRender software. 
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Vitamin A 
Vitamin A is obtained from the diet in the form of 

all-trans-retinol (ATR), retinol esters, or β-carotene. 
Retinol circulates in the blood, forming a complex with 
retinol-binding protein and transthyretin. ATR is 
esterified and stored in the liver, and retinol and β-
carotene are oxidized to all-trans-retinal in tissues by 
the action of alcohol dehydrogenases. Then, the retinal 
is oxidized to all-trans-retinoic acidic (RA) by retinal 
dehydrogenases, which is the active metabolite of 
vitamin A [39]. Vitamin A promotes immune functions, 
increases IL-2 secretion, and consequently, T-cell 
proliferation, and depending on microenvironment 
conditions, and it may enhance or suppress the 
proliferation of B lymphocytes [40]. Moreover, 
inflammatory stimuli, such as TNF, have even been 
shown to encourage RA to enhance dendritic cell 
maturation and antigen presentation capacity [41]. In 
the context of TB, evidence from in vitro studies 
showed that RA is needed by infected monocytes or 
macrophages to mediate antimicrobial mechanisms 
through an NPC2-dependent pathway, and under this 
condition, the cellular cholesterol decreases and 
improves antimicrobial activity [42]. Previously, an 
animal model showed that hypercholesterolemia 
increases susceptibility to M.tb infection owing to the 
induction of a weak proliferative response and delayed 
activation of adaptative responses [43]. A higher ability 
to produce nitric oxide to avoid the intracellular 
survival of M.tb was shown in an in vitro study using 
human macrophages (U937 cell line) stimulated with 
RA before M.tb infection [44]. In an in vivo model, the 
use of RA as a therapeutic agent was suggested; M.tb-
infected rats that received RA showed less severity of 
TB histopathology and decreased the number of 
colony-forming units, and their alveolar macrophages 
secreted high levels of TNF and IL-1β [45]. 

 
Vitamin D 

Vitamin D is obtained as vitamin D2 
(ergocalciferol) or D3 (cholecalciferol). D2 is consumed 
in the diet, but less than 0.1% is metabolised, whereas 
D3 is produced by photolysis and activated in the liver 
via 25-hydroxylase to 25-hydroxyvitamin D, and as a 
secondary pathway, 25-hydroxyvitamin D is lysed in 
the kidney via 1-hydroxylase to the active form 1α25-
dihydroxy vitamin D3 (1,25(OH)2D)-calcitriol. Thus, 
vitamin D binds to the vitamin D receptor (VDR) and 
regulates the expression of genes related to the 
activation of immune responses [46].  

There is increasing evidence on the role of vitamin 
D in TB. Studies have been performed in both animal 

models and in vitro. A murine TB model showed that 
the VDR/vitamin D interaction induces cathelicidin 
synthesis (LL-37) and increases the mortality rate [47]. 
It has also been suggested that D3 treatment promotes 
monocyte-to-macrophage differentiation and increases 
phagocytosis mediated by the mannose receptor [48]. 
Other studies suggest that treatment with D3 enhances 
autophagy dependently with LL-37 and promotes 
lymphoproliferative processes [49]. In vitro, by adding 
vitamin D, to cultures of cells from subjects with serum 
deficiency, the expression levels of antimicrobial 
peptides were increased, and the fusion of 
phagosome/lysosome in infected macrophages was 
improved [50]. Experimental studies suggested that 
vitamin D also has implications in adaptive immunity 
regulation; the stimulation of cells with vitamin D and 
mycobacterial antigens promotes differentiation to Treg 
cells and decreases chemokine levels, suggesting that it 
regulates exacerbated inflammatory processes [51]. It 
can also regulate the inflammatory process by 
regulating the Cdx2AA gene in T cells and inhibit Th17 
cell differentiation through NFκB [52,53]. 

 
Zinc 

Zinc plays a vital role in the structure and function 
of proteins; approximately 10% of proteins bind to zinc, 
including cytokines, transcription factors, and enzymes. 
In animal models, zinc deficiency has been shown to 
cause thymus atrophy and lymphopenia with increased 
risk of infections [54]. Numerous studies suggest that 
zinc is essential for homeostasis and immune system 
function; its deficiency decreases the phagocytic 
activity of macrophages, as well as their ability to 
recycle nutrients and defend against intracellular 
pathogens [55]. It is not surprising that zinc deficiency 
is associated with impaired immune responses against 
M.tb infection. It has been reported that zinc 
accumulation in phagosomes is required to shorten the 
life span of phagocytic pathogens [56]. Zinc transporter 
proteins (Zrt) are responsible for the biodistribution of 
zinc. There are several groups of these proteins, and Zrt-
/Irt-like proteins (ZIPs) are one of them. During in vitro 
infections with M.tb, the expression patterns of various 
ZIPs were observed to change; for example, the 
expression levels of ZIP10 and ZIP8 decrease and 
increase, respectively, indicating that M.tb alters zinc 
homeostasis [57]. Patients with active TB and MDR-TB 
have low levels of zinc at diagnosis moment, but the 
zinc level increases after anti-TB treatment [58,59]. 
This alteration in zinc homeostasis is partly explained 
as a host strategy against the pathogen; however, the 
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mechanism by which zinc functions in M.tb control has 
not been fully elucidated. 

 
Clinical studies using micronutrient supplements in TB 

Basic research showed the importance of 
micronutrients in the immune system and their role in 
infections, and numerous clinical trials have been 
performed to evaluate the effect of micronutrient 
supplementation on subjects at risk and those with 
active TB. Surprisingly, while data obtained in vitro or 
animal models show the relevance of micronutrients in 
the anti-mycobacterial immune response, there is no 
reliable evidence from clinical studies for 
recommending supplementation strategies as adjuvant 
therapy for TB and more clinical research is needed to 
elucidate the molecular mechanisms that remain 
unclear. 

 
Vitamin A and Zinc as adjuvant therapy in tuberculosis 

In a study on TB patients, a daily supplement of 
multivitamins (A, B, C, E, and selenium) decreases the 
risk of early relapse (45%), and in HIV+TB patients, 
increased CD4+ T cell counts improve peripheral 
neuropathy [60]. In another study on TB patients, 
vitamin A and zinc supplementation promote sputum 
conversion only in the first four weeks without 
differences within two months [61]. Zinc supplements 
during anti-TB treatment in children did not show 
improvements on the radiological outcome or weight 
gain [62]. In TB patients from Mexico, supplementation 
of vitamin A and zinc in 3 months increased TNF and 
IFNγ concentrations and decreased IL-10 levels [63]. 

 
Vitamin D as adjuvant therapy in tuberculosis 

Although studies have been published for more than 
a decade that associate vitamin D deficiency with an 
increased risk (up to five times more) of developing TB 
in subjects with latent TB, some current studies have 
not supported such finding. No clinical benefit has been 
demonstrated in systematic reviews in patients with 
active TB or HIV-infected patients [64,65]. 

A study that analyzed the effect of vitamin D 
supplementation on patients with TB and HIV+TB 
patients showed no difference in mortality [66]. 
However, in other studies involving TB patients 
receiving 2.5 mg of vitamin D, the median conversion 
time of the culture was shorter in the group that received 
vitamin D than in the group that did not [67]. Moreover, 
in the SUCCINCT (Study Supplementary 
Cholecalciferol in recovery from tuberculosis), TB 
patients received 600,000 UI of vitamin D 
intramuscularly at 0 and 4 weeks after treatment, and it 

was found that in subjects with a baseline deficiency of 
this micronutrient and who received the supplement, 
clinical and radiological improvements were 
accelerated significantly. An increase in post-stimulus 
IFNγ levels was also observed in vitro with ESAT-6 and 
CFP-10 [68]. In another study on patients with the 
genotype vitamin D receptor TaqI polymorphism tt, 
who received high doses of vitamin D during the 
intensive phase of treatment, their conversion of the 
culture was accelerated, and their lymphocyte and 
monocyte count increased at eight weeks [69]. Some 
clinical trials analysed the effect of supplementation at 
different dosages and times of administration. 

New studies have been designed, and recently a 
report evaluated the supplemental efficacy of vitamin 
D3 to reduce the incidence and mortality of pulmonary 
TB in patients co-infected with HIV, this study was 
called the Trial of Vitamins-4 (ToV4), patients were 
recruited between 2014 and 2017, but their results 
suggested that there was no difference between vitamin 
D3 and placebo groups. [70]. A clinical study in phase 
II is being conducted in South Africa, it has as aim 
establish a shortening of the time of anti-TB treatment 
using multiple adjunctive host-directed TB therapies, 
and one of them is an experimental intervention with 
vitamin D3 [71]. There is a recent study named 
ResolveD-TB, which will determinate if vitamin D3 has 
the potential to prevent recurrent TB. A dietary 
supplement with vitamin D3 was given to patients who 
finished anti-TB treatment, and they had chronic 
inflammation in the lung, which was detectable by 
positron emission tomography (PET) [72]. Few studies 
have evaluated vitamin D as prophylaxis for the 
development of TB, and some studies suggest that in 
groups at risk, vitamin D levels should be quantified, 
and underlying diseases that cause its deficiency, such 
as Crohn's disease, should be considered [73]. In South 
Africa, the number of cases of vitamin D deficiency in 
HIV patients was shown to increase in winter. 
However, when the patients received doses of 50,000 
UI of cholecalciferol for six weeks, it was observed that 
their leukocyte counts increased [74]. These lines of 
evidence and the close relationship seen among 
micronutrient deficiency, HIV infection, and TB 
development should be considered more research about 
the use of vitamin D as adjuvant therapy for prophylaxis 
in groups at risk.  

 
Perspectives 

There is extensive evidence on the role of 
malnutrition in M.tb infection and in in vitro assays on 
micronutrient involvement to strengthen the immune 
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system. However, there is a lack of strong evidence on 
the use of nutrient supplements from clinical trials. 
Experimental studies in vitro or animal models have not 
sufficiently clarified the cellular activation pathways 
involved in response to micronutrients. It is still 
necessary to search for new knowledge that will 
reinforce the relevance of the use of micronutrients in 
clinical trials, in order to develop clinical interventions 
that will help TB patients improve their quality of life. 
Even within basic research, few models allow the study 
of the relationship between micronutrient deficiency 
and M.tb infection, showing the need to develop more 
accurate models to find adjuvant therapies that expedite 
the elimination of the pathogen. Recent research 
focuses on the study of micronutrients from the 
perspective of maintaining a healthy gut microbiota, not 
only to assess the proper absorption of micronutrients 
but also to propose that the gut microbiota is essential 
for maintaining homeostasis in the immune system. 
Malnutrition status also affects the response to anti-TB 
drugs and is associated with an increased risk of relapse 
diseases. In developing countries, nutrition status is 
relevant because significant numbers of TB cases are 
attributable to undernourishment, leading the countries: 
India, Pakistan, China, Philippines and Indonesia. 
Whereas in the region of the Americas, the first 
countries with TB cases associated with malnutrition 
are: Haiti, Peru, Brazil, Bolivia and Venezuela [2]. In 
the Latin American population, few clinical trials assess 
the impact of malnutrition on tuberculosis. For now, 
WHO recommends an assessment of nutritional status 
at baseline in all TB patients and an assessment of post-
treatment weight gain, thus TB patients should have an 
adequate diet with macro- and micronutrients, and if 
this diet is not guaranteed, supplements can be provided 
to them. Surprisingly, the doses of supplements 
together with treatment time have not yet been 
standardised, reinforcing the urgent need to elucidate 
the optimal amounts of each micronutrient and when to 
start supplementation. Nowadays, the treatment of TB 
should be a comprehensive approach, not only looking 
for a bacteriologic cure but also focusing on nutritional 
management, psychological and evaluation of 
pulmonary sequelae [75]. Therefore, we suggest that 
National TB Programs must go beyond just providing a 
pharmaceutical treatment; these programs should 
evaluate nutritional deficiencies to supply an adequate 
nutritional supplementation to TB patients, in order to 
improve quality of life and treatment outcomes. 
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