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Abstract 
Introduction: COVID-19 has become a global concern because it has extensive damage to health, social and economic systems worldwide. 
Consequently, there is an urgent need to develop tools to understand, analyze, monitor and control further outbreaks of the disease. 
Methodology: The Susceptible Infected Recovered-Particle SwarmOptimization model and the feed-forward artificial neural network model 
were separately developed to model COVID-19 dynamics based on daily time-series data reported by the Saudi authorities from March 2, 2020 
to February 21, 2021. The collected data were divided into training and validation datasets. The effectiveness of the investigated models was 
evaluated by using various performance metrics. The Susceptible-Infected-Recovered-Particle-Swarm-Optimization model was found to well 
predict the cumulative infected and recovered cases and to optimally tune the contact rate and the characteristic duration of the illness. The 
feed-forward artificial neural network model was found to be efficient in modeling daily new and cumulative infections, recoveries and deaths. 
Results: The forecasts provided by the investigated models had high coefficient of determination values of more than 0.97 and low mean 
absolute percentage errors (around 7% on average). 
Conclusions: Both the Susceptible-Infected-Recovered-Particle-Swarm-Optimization and feed-forward artificial neural network models were 
efficient in modeling COVID-19 dynamics in Saudi Arabia. The results produced by the models can help the Saudi health authorities to analyze 
the virus dynamics and prepare efficient measures to control any future occurrence of the epidemic. 
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Introduction 

The highly infectious disease, SARS-CoV-2, more 
commonly known as COVID-19, has spread worldwide 
causing a high number of infections and deaths and 
affecting the social, health and economic systems of 
almost every country on the planet [1-5]. In Saudi 
Arabia, the first positive case was reported on March 2, 
2020. One year later, as of March 2, 2021, official 
statistics reported 377,700 total cases, 368,640 
recovered cases, 2,560 active cases, 492 critical cases 
and 6,500 deaths in the country [6]. Local authorities 
implemented several measures that included a total 
lockdown involving the closure of universities and 
schools, suspension of Umrah, an airport lockdown 
[7,8]; and social distancing [9], but the disease 
continued to spread, touching almost all of Saudi 
territory.  

Saudi health authorities started a vaccination 
campaign on December 17, 2020 and, at the beginning 
of 2021, the first wave of the disease seemed to be 
approaching its end with the arrival of many vaccines. 
However, since then, more waves have arrived. 

During this ongoing pandemic, the most populated 
and active regions such as Riyadh, Jeddah, Makkah and 
Al-Madinah Al-Munawara have recorded the highest 
numbers of infected cases. Based on infected cases, 
Saudi Arabia is now ranked at number 41 among 
COVID-19-infected countries [5]. However, earlier, 
Saudi Arabia was classified for a long period at number 
15. Owing to the severity of the disease and the 
randomness of its variable trajectory, the accurate 
modeling of its dynamics is a challenging issue. Yet, 
this challenge needs to be overcome because efficient 
modeling can contribute to the analysis of the dynamics 
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and the control of any future wave of COVID-19 and of 
any other epidemic related to the respiratory system. 

The forecasting of epidemics is mainly based on 
mathematical models and recorded data [10]. Modeling 
is a key tool that can assist health authorities to 
understand the transmission modes of an epidemic and 
to estimate the number of new cases, critical cases, 
recoveries and deaths, and perhaps a probable end date. 
Accurate models help in mitigating disease spread and 
in implementing suitable control actions [11]. In the 
case of the COVID-19 pandemic, limited information 
about its mode of transmission is available [12]. For 
instance, it has been reported that virus transmission 
can occur from an individual who is asymptomatic [13]. 

Various mathematical approaches for predicting 
COVID-19 dynamics have been developed, which have 
achieved varying levels of accuracy. These models 
range from the simple to the complicated. Examples of 
such models include the classical SIR (Susceptible, 
Infected and Recovered) model [14-15] and its variants 
(SI, SIS). The SIR model is composed of a set of 
continuous-time nonlinear differential equations [16]. 
The model considers several parameters, which 
requires the processing of a large amount of data. 
Extended versions of the SIR model such as SIER 
(which adds Exposed cases to the SIR model) [17,18], 
SIEQR (which adds Quarantined cases to the SIER 
model) [19,20] and SIRD (which adds Deaths to the 
SIR model) [21], have been investigated for different 
purposes and to find effective methodologies for 
modeling COVID-19 dynamics in different countries. 
However, the main difficulty faced by practitioners 
involved in the development of SIR models is the fact 
that the models are dependent on nonlinear continuous-
time equations, and the solving of such equations by 
using exact explicit formula is impossible even when 
using assumptions to simplify and relax the solutions.  

Practitioners have always resorted to using 
computer codes to get approximate solutions. 
Numerical algorithms are mainly based on data 
available in discrete-time frequency (daily in the case 
of COVID-19) [14,22]. As is well known, in numerical 
computation, smaller sampling periods may provide 
more accurate solutions. However, the only available 
choice for COVID-19 is the frequency of 1 day because 
the disease data are compiled and communicated daily. 
Moreover, as reported by [23], simpler models such as 
the SIR model may perform better than more 
complicated models such as the SIER model. Time-
series econometric models have also been examined to 
assess their suitability for analyzing COVID-19 
dynamics. Examples of such work include [24-27], 

which separately used the autoregressive integrated 
moving average (ARIMA) and reported that although 
the results of this approach are quite accurate, more 
real-time data is required in order for the approach to 
provide highly precise forecasts. Generalized growth 
models have been also assessed for estimating the 
growth rate and the growth scaling parameter [10,28] of 
this disease.  

Another trend in the modeling of COVID-19 
dynamics has focused on the use of machine learning 
(ML) and population-based algorithms. For instance, 
[29] developed models based on genetic evolutionary 
programming to calibrate parametric models for various 
regions in India. Meanwhile, [30] examined the 
utilization of artificial intelligence (AI) tools for 
forecasting multi-step-ahead COVID-19 numbers in 
China in which a modified stacked auto-encoder was 
used. The authors reported that the accuracy of the 
results was high in spatial-temporal levels. However, 
details of the model implementation were missing. In 
another China-based study, an adaptive neuro-fuzzy 
inference system (ANFIS) was used to forecast 10-
days-ahead confirmed infected cases in Wuhan [31]. 
The ANFIS was also combined with the flower 
pollination algorithm to prevent the system from getting 
trapped in local solutions [32]. Elsewhere, the Long-
Short-Term Memory (LSTM) network, which is a 
popular deep-learning algorithm, has been used for 
predicting COVID-19 cases in several Canadian 
provinces. However, although the generated forecasts 
are quite accurate, the authors noted that the LSTM may 
need a high amount of data to improve the level of 
accuracy.  

A few works including [33] and [34] have used the 
particle swarm optimization (PSO) technique to 
determine the optimal parameters of, respectively, the 
SIR and the SIER models. The results presented in [34] 
have the drawback of having been generated by a model 
with given parameters. However, the results presented 
in [33] are based on real COVID-19 data from Hubei, 
China under different scenarios, and showed that the 
use of PSO was efficient and accurate.  

Based on the previous literature concerning the 
importance of implementing mathematical models for 
predicting COVID-19 dynamics in a short-term 
horizon, the aim of this study is to develop models for 
the case study of Saudi Arabia as a representative of the 
Arab Gulf countries which were, for a long period of 
time, among the COVID-19 pandemic outbreak 
epicenters alongside some countries in South America 
and India. In Saudi Arabia, the disease has exhibited a 
fluctuating transmission rate, which has made its 
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prevalence trend difficult to predict. In this study, the 
dynamics of the COVID-19 outbreak in Saudi Arabia 
are modeled by using a novel SIR-PSO approach and 
by using a feed-forward artificial neural network (FF-
ANN) method.  

The use of PSO is justified by the fact that it is a 
global search tool capable of operating in random and 
variable environments such as in the case of COVID-
19. Moreover, it is useful in solving the SIR model 
identification problem, which is known to be nonlinear, 
non-convex and difficult to calibrate with discrete data 
because it is originally a continuous-time model. As the 
variables that affect the COVID-19 outbreak are 
difficult to quantify (disease transmission is generally 
caused by social behavior), the use of a FF-ANN model 
that expresses the next day’s newly infected cases as a 
function of the previous days’ infections would seem to 
offer a way to arrive at a new efficient solution. The 
effectiveness of the FF-ANN in using historical records 
as inputs is investigated owing to the high ability of 
neural networks to describe complex phenomena such 
as those related to COVID-19 dynamics. The proposed 
FF-ANN method is new because, to the best of the 
authors’ knowledge, this study is the first to use several 
previous days’ numbers of infected cases to predict the 
upcoming next day’s number of infected cases by using 
a neural network. Intuitively, this idea is well founded 
because the infection is transmitted to new individuals 
from previously infected individuals. The proposed 
model is applied to a dataset covering the period from 
March 2, 2020 to February 21, 2021 as input. A 
comparative study of the developed models is 
conducted by using the following statistical 
performance metrics: the mean absolute percentage 
error (MAPE), the coefficient of determination (R2) and 
the root mean squared error (RMSE). 

The remainder of this paper is organized as follows: 
First, the methodology section presents the details of 
the SIR-PSO and FF-ANN models developed in this 
study. In the next section, the results are presented and 
discussed. The final section concludes the paper and 
includes some recommendations for future work.  

 
Methodology 

In this section, the SIR-PSO and the FF-ANN 
models, which are categorized, respectively, as 
population-based and ML approaches, are designed and 
investigated for modeling COVID-19 dynamics in 
Saudi Arabia. The SIR-PSO model employs a swarm 
intelligence optimization technique (PSO) to optimally 
determine the SIR model parameters (the contact rate 
and the characteristic duration of the disease) by 

minimizing the error between the recorded COVID-19 
numbers and the same numbers generated by the model. 
The FF-ANN model is a ML structure that learns from 
knowledge. It is considered that the FF-ANN has the 
capacity to map data for complex phenomena such as 
COVID-19. The mathematical flow of the two proposed 
models is mainly based on dividing the data into two 
subsets for training (80%) and model validation (20%). 
The efficiency of the models is measured by using 
statistical performance metrics (MAPE, R2 and RMSE).  

 
SIR-PSO model 

In this study, the SIR model is adopted because it is 
simpler than other models such as the SIER [23]. The 
SIR model is composed of a set of differential equations 
(in continuous-time) that relate to subsets of a 
population consisting of Susceptible (S), Infected (I) 
and Recovered (R) cases [16,33]. In the SIR model, the 
dynamics of COVID-19 disease are described by Eqs. 
1–3 as follows: 

 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝐾𝐾𝐾𝐾(𝑡𝑡)𝐼𝐼(𝑡𝑡)    (1) 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝐾𝐾𝐾𝐾(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 1
𝛽𝛽
𝐼𝐼(𝑡𝑡)    (2) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 1
𝛽𝛽
𝐼𝐼(𝑡𝑡)      (3) 

 
where 𝐾𝐾  is the contact rate expressing the 

probability of being infected and 𝛽𝛽 is the characteristic 
duration of the disease.  

As COVID-19 pandemic data are available at a 
discrete-time level and explicit solutions are quite 
difficult, the finding of SIR model solutions should be 
based on an efficient numerical algorithm operating on 
discrete-time [34]. For this purpose, the Euler first-
order method is used to transform the SIR continuous-
time model (Eqs. 1–3) into a discrete-time form (Eqs. 
4–6) (Note that for this purpose, 𝑑𝑑𝐾𝐾(𝑡𝑡) = 𝑠𝑠(𝑡𝑡 + 𝑑𝑑𝑡𝑡) −
𝐾𝐾(𝑡𝑡)  and 𝑑𝑑(𝑡𝑡) = 1𝑑𝑑𝑑𝑑𝑑𝑑 . The choice of 1 day as the 
sampling period is dictated by the availability of official 
data, which are reported for COVID-19 only a daily 
basis.): 
 
𝐾𝐾(𝑡𝑡 + 1) = 𝐾𝐾(𝑡𝑡) − 𝐾𝐾𝐾𝐾(𝑡𝑡)𝐼𝐼(𝑡𝑡)   (4) 
𝐼𝐼(𝑡𝑡 + 1) = 𝐼𝐼(𝑡𝑡) + 𝐾𝐾𝐾𝐾(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 1

𝛽𝛽
𝐼𝐼(𝑡𝑡)  (5) 

𝑅𝑅(𝑡𝑡 + 1) = 𝑅𝑅(𝑡𝑡) + 1
𝛽𝛽
𝐼𝐼(𝑡𝑡)    (6) 

 
where subscript 𝑡𝑡  indicates the day number and 

(t+1) indicates the one-day-ahead variables. 
Particle swarm optimization, a population-based 

method that was introduced by Kennedy and Eberhart 
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[35] in 1995 simulates the social behavior of animals. 
Since then, PSO has been used efficiently in various 
fields including water demand prediction [36], electric 
peak-load forecasting [37], energy market forecasting 
[38] and networked epidemic control [39], to cite just a 
few. In PSO, each member (called a particle) is assigned 
a position vector 𝑋𝑋 = [𝐾𝐾𝛽𝛽] including the parameters of 
the SIR model to be optimized. The principle of SIR-
PSO is that each particle adjusts its position inside the 
search space in order to minimize the quadratic error 
between the actual and predicted values of the 
cumulative S, I and R components. Thus, the objective 
function is defined as follows (Eq. 7): 

 

𝐽𝐽(𝑋𝑋) = ∑ �𝐾𝐾(𝑡𝑡) − 𝐾𝐾(𝑡𝑡)�
2𝑡𝑡𝑓𝑓

𝑡𝑡0
+ �𝐼𝐼(𝑡𝑡) − 𝐼𝐼(𝑡𝑡)�

2
+

�𝑅𝑅(𝑡𝑡) − 𝑅𝑅(𝑡𝑡)�
2
     (7) 

 
where 𝑡𝑡0𝑡𝑡𝑓𝑓 are the first day and the last day of the 

collected COVID-19 data, respectively. 𝐾𝐾(𝑡𝑡), 𝐼𝐼(𝑡𝑡)and 
𝑅𝑅(𝑡𝑡) are the estimates of S, I and R at the tth day, 
respectively. 

During the search process, each particle 
recalculates its current position by using Eqs. 8–10 as 
follows: 
 
𝑉𝑉𝑘𝑘+1𝑖𝑖 = 𝑤𝑤𝑘𝑘𝑉𝑉𝑘𝑘𝑖𝑖 + 𝐶𝐶1𝑟𝑟1�𝑃𝑃𝑖𝑖 − 𝑋𝑋𝑖𝑖� + 𝐶𝐶2𝑟𝑟2�𝐺𝐺𝑖𝑖 − 𝑋𝑋𝑖𝑖�
      (8) 
𝑋𝑋𝑘𝑘+1𝑖𝑖 = 𝑋𝑋𝑘𝑘𝑖𝑖 + 𝑉𝑉𝑘𝑘+1𝑖𝑖     (9) 
𝑊𝑊𝑘𝑘 = 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 −

𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚−𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

.𝑘𝑘   (10) 
 

where 𝑃𝑃𝑖𝑖 and 𝐺𝐺𝑖𝑖 are two vectors that have the same 
dimension as 𝑋𝑋𝑖𝑖  and represent, respectively, the best 
position so far visited by the ith particle and the global 
best position of the population. 𝑉𝑉𝑖𝑖 is a velocity operator 

that represents the increment added to the current 
particle’s position.  

Let us consider k as the iteration index. The inertia 
weight function linearly decreases from an initial value 
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 to a final value 𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 that is reached at the end of 
the optimization process. 𝐶𝐶1 and 𝐶𝐶2 are cognitive and 
social factors, respectively. 𝑟𝑟1  and 𝑟𝑟2  are random 
numbers within the interval [0-1] that are used to 
diversify the solutions related to the swarm [35-36]. 
The SIR-PSO model operates as follows: 

• Step 1: Initialize randomly the positions, 
velocities and personal best positions inside the 
search-space limits and calculate the objective 
function to be minimized according to Eq. 7.  

• Step 2: Determine the personal best position 
and the global best position. 

• Step 3: Update the particles’ positions by using 
Eqs. 8–9. Confine the particles inside the 
search space if needed. 

• Step 4: Calculate the objective function (Eq. 7) 
for all the population and determine the new 
personal best position for each particle and the 
index of the particle with the global best 
position.  

• Step 5: Repeat steps 3 and 4 until a preset 
maximum number of iterations ( 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ) (i.e., 
the stopping criterion) is reached. The position 
of the global best particle is taken as the 
solution of the SIR-PSO optimization problem.  

 
FF-ANN model 

Machine learning techniques such as artificial 
neural networks (ANNs) are used as modeling tools for 
complex phenomena in the absence of efficient 
parametric models. Artificial neural networks are 
increasingly being used in forecasting in several 
domains including solar energy [40], municipal water 
consumption [41] and the spread of COVID-19 [42]. 
Feed-forward artificial neural networks are currently 
the most widely used form of ANN (see Figure 1 for the 
basic FF-ANN structure). Inputs (called patterns in 
ANN terminology) are introduced to the input layer 
which, after multiplying them by weights and adding 
biases, transfers them to an activation function. This 
process is repeated until the output layer, which 
generates the calculated final network output. The 
quadratic error between the FF-ANN outputs and the 
predetermined outputs (called targets) is then 
minimized by a training algorithm that optimizes the 
weights and biases. In COVID-19 modeling, the 
patterns are the historical records of the new/cumulative 

Figure 1. Basic structure of FF-ANN. 



Zrieq et al. – Modeling COVID-19 in Saudi Arabia using ML     J Infect Dev Ctries 2022; 16(1):90-100. 

94 

infected, recovered and dead cases of the previous days. 
In such a case, the FF-ANN output is calculated as 
follows (Eq. 11): 

 
𝑑𝑑(𝑡𝑡 + 1) = 𝑓𝑓�𝑑𝑑(𝑡𝑡),𝑑𝑑(𝑡𝑡 − 1), … ,𝑑𝑑(𝑡𝑡 − 𝑑𝑑)�  (11) 

 
where e(t) is an error function usually assumed to 

be normal and white.  
Based on Figure 1, the behavior of the FF-ANN is 

governed by the following set of equations (Eq. 12): 
 

𝑑𝑑1 = 𝑓𝑓1(𝑊𝑊1,1𝑋𝑋 + 𝑏𝑏1)                 (12) 
𝑑𝑑2 = 𝑓𝑓2(𝑊𝑊2,1𝑑𝑑1 + 𝑏𝑏2) 
𝑑𝑑𝑗𝑗 = 𝑓𝑓𝑗𝑗�𝑊𝑊𝑗𝑗,𝑗𝑗−1𝑑𝑑𝑗𝑗−1 + 𝑏𝑏𝑗𝑗� 
𝑑𝑑𝑁𝑁 = 𝑓𝑓𝑁𝑁(𝑊𝑊𝑁𝑁,𝑁𝑁−1𝑑𝑑𝑁𝑁−1 + 𝑏𝑏𝑁𝑁) 

 
where:  
• 𝑑𝑑𝑗𝑗 , 𝑊𝑊𝑗𝑗,𝑗𝑗−1 , 𝑏𝑏𝑗𝑗 , and 𝑗𝑗 = 1:𝑁𝑁 are the outputs, 

weights and biases of the 𝑗𝑗𝑡𝑡ℎlayer, respectively. 
• 𝑑𝑑1is the output of the input layer and 𝑑𝑑𝑁𝑁 is the 

output of the last layer.  
• 𝑓𝑓𝑗𝑗is the transfer function of the 𝑗𝑗𝑡𝑡ℎ layer. 
The number of hidden layers and the number of 

neurons in each of the hidden layers are practically 
determined by using the trial-and-error method [40], 
which is the most time-consuming- step of an ANN 
design. 

The training of an ANN involves optimally tuning 
the weights and biases of different layers by minimizing 
the error function between the ANN output and the 
target: 𝑑𝑑 , that varies between 1 and 6, where these 
values represent the probable incubation periods of 
COVID-19 disease [31]. 

 
𝜀𝜀2(𝑊𝑊𝑖𝑖, 𝑏𝑏𝑏𝑏) = ∑ �𝑑𝑑(𝑡𝑡) − 𝑓𝑓�𝑑𝑑(𝑡𝑡 − 1),𝑑𝑑(𝑡𝑡 −𝑁𝑁

𝑡𝑡=1

2), … ,𝑑𝑑(𝑡𝑡 − 𝑑𝑑)� + 𝑒𝑒(𝑡𝑡)�
2
   (13) 

 
There are two main motivations for using the FF-

ANN to model COVID-19 disease dynamics. First, the 
mechanism of infection transmission is very complex 
because it depends on several parameters such as the 
movements of infected persons, the possibility of 
transmission from asymptomatic infected individuals, 
the types of control measures in place, etc. It is known 
from the application of FF-ANNs in several domains 
that they are good universal approximators that can 
model complex phenomena such as COVID-19. 
Second, intuitively, any new infection results from 
previous infections. Therefore, this study uses the 
number of infections of previous days as inputs 

(patterns) of the FF-ANN and the number of infections 
in the next day as the output (target) for the proposed 
FF-ANN model. Thus, a relationship between patterns 
and targets through learning algorithms is established. 
The idea of varying the number of used inputs, which is 
one of the novelties of this study, allows the 
quantification of the contributions of the previous days 
reported infections to the next day’s infections. 

 
Data 

The COVID-19 data for Saudi Arabia are available 
from the official statistics E-platform of the Saudi 
Ministry of Health [43], which reports on a daily basis 
the new confirmed cases, the cumulative cases, the new 
recovered cases, the cumulative recovered cases, new 
deaths and total deaths. This study is based on records 
starting on March 2, 2020 (the date of the registered first 
case) and ending on February 21, 2021. This dataset 
includes 357 records. In order to model the COVID-19 
dynamics, the dataset is divided into two subsets: 285 
records (80%) are used for model training 
(development) and the remaining 72 records (20%) are 
used for model validation (testing). Figure 2 depicts the 
plots of the infected (both new and cumulative) cases.  

From Figure 2, it can be observed that the 
progression of newly registered cases had four notable 
peaks of different intensities. The most significant peak 
occurred around June 17, 2020 when the daily newly 
infected cases reached 4919. The increase and decrease 
phases are highly correlated with the control measures 
that were put in place by the Saudi authorities, which 
included a total lockdown at the beginning of the 
epidemic and the later application of a monetary penalty 

Figure 2. Cumulative (top) and new (bottom) infected cases of 
COVID-19 in Saudi Arabia for the period from March 2, 2020 
to February 21, 2021. 
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for those who did not wear a face mask or those who 
violated the social distancing rules. After a long period 
of sustained infection rates, on January 3, 2021, the 
daily newly infected cases finally fell to a low 82. 
Although Saudi Arabia flattened the curve of the first 
wave, the overall behavior fluctuated over the period 
covered by the study. The cumulative progression of the 
disease represents a “logistic” behavior that was also 
seen in many other countries such as China [20] and 
Italy (first wave) [27]. From January 15, 2021, Saudi 
Arabia saw an increase in the daily number of newly 
infected cases with a slightly fluctuating curve that 
continues until the end of the data used in this study. 
During that time, the country was facing the risk of a 
second wave although a vaccination campaign had 
started.. 

As regards the death rate due to COVID-19, this is 
defined by the Saudi Ministry of Health as the ratio 
between the cumulative number of deaths by the 
number of closed cases (including cases where the 
outcome was either recovered/discharged or dead). In 
Saudi Arabia, this ratio was found to be around 0.02 
(2%) for the period under study. This value is relatively 
low when compared to the death rates of other 
countries. Globally, the death rate reached 3%, versus 
97% of recovered cases [5]. 

 
Performance metrics 

The accuracy of the two developed forecasting 
models was measured by comparing the predicted 
values to the actual (reported) values. Three 
performance indicators, MAPE, R2 and RMSE, were 
used to assess and compare the efficiency of the models. 

These performance metrics are expressed, respectively, 
in Eqs. 14, 15 and 16 as follows [25,36]:  

 
• Mean absolute percentage error (𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀) 
𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀 = 100

𝑁𝑁
∑ |𝑦𝑦(𝑡𝑡)−𝑦𝑦(𝑡𝑡)|

𝑦𝑦
𝑁𝑁
𝑡𝑡=1    (14) 

 
• Coefficient of determination (𝑅𝑅2) 

𝑅𝑅2 = 1 −
1
𝑁𝑁∑ �𝑦𝑦(𝑡𝑡)−𝑦𝑦(𝑡𝑡)�

2𝑁𝑁
𝑡𝑡=1

1
𝑁𝑁∑ (𝑦𝑦(𝑡𝑡)−𝑦𝑦)2𝑁𝑁

𝑡𝑡=1
   (15) 

 
•  Root mean square error (𝑅𝑅𝑀𝑀𝐾𝐾𝑀𝑀 

𝑅𝑅𝑀𝑀𝐾𝐾𝑀𝑀 = �1
𝑁𝑁
∑ �𝑑𝑑(𝑡𝑡) − 𝑑𝑑(𝑡𝑡)�2𝑁𝑁
𝑡𝑡=1   (16) 

 
where 𝑑𝑑(𝑡𝑡)  and 𝑑𝑑(𝑡𝑡)  represent, respectively, the 

predicted and the actual (reported) number of cases 
(infected, recovered and deaths) at day 𝑡𝑡 . 𝑑𝑑  is the 
average of the daily values under evaluation. Lower 
𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀  and 𝑅𝑅𝑀𝑀𝐾𝐾𝑀𝑀  and higher R2 (value located 
between 0 and 1) are indicators of better data fitting 
[31], [42]. N is the size of the used dataset. 

 
Results  

In this section, the results of the SIR-PSO and the 
six versions of the FF-ANN are detailed. All models 
were based on time-series related to COVID-19 records 
in Saudi Arabia.  

 
SIR-PSO 

The SIR model is a simple model that gives the 
susceptible, infected and recovered cases through the 
use of a set of nonlinear continuous-time differential 
equations. As there is no efficient analytic method to 
solve such a problem [16] and because COVID-19 data 
are available on a discrete-time basis (daily), this study 
investigated the use of the PSO as a powerful technique 
to obtain a feasible and sub-optimal solution. In the 
model, the two parameters 𝐾𝐾𝛽𝛽 are tuned optimally such 
that the quadratic error between the forecasted and 
reported number of cases is minimized (Eq. 7). The 
PSO design parameters are summarized as follows: 
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9, 𝑤𝑤𝑚𝑚𝑖𝑖𝑚𝑚 = 0.4, number of particles = 50, 𝐶𝐶1 
= 𝐶𝐶2  = 0.75, and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 100  which is used as a 
stopping criterion. According to the Worldometer 
website that supplies COVID-19 data [6], the Saudi 
population is 34,799,212, and this number is therefore 
used as the susceptible initial value population, S(0). 
The initial value of infected cases is considered as I(0) 
= 1 which corresponds to the first reported case on 
March 2, 2020. The initial number of recovered cases is 

Figure 3. Cumulative infected cases for the period from March 
2, 2020 to February 21, 2021.  
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obviously R(0) = 0 as of the same day. The contact rate 
K upper limit is chosen deliberately as Kmax = 
1/35000000. The upper and lower limits of the 
characteristic duration of the disease, 𝛽𝛽 , are chosen, 
respectively, as 1 day and 14 days which is considered 
by several studies as the incubation period of COVID-
19 during which an infected individual can transfer the 
virus to another susceptible individual [27]. The 
model’s two parameters are tuned optimally following 
the abovementioned Steps 1–5. The PSO algorithm is 
stochastic. Therefore, it has to be run several times. In 
this paper, only the results of the best run are reported. 
The performance metrics of the SIR-PSO model as well 
as the optimal values for the SIR model parameters are 
summarized in Table 1. 

The plots of the actual and forecasted (by SIR-PSO) 
cumulative infected and recovered cases are shown in 
Figure 3 and Figure 4, respectively. It can be seen that 
the curves of the forecasted and recorded cases are 
almost similar. However, the SIR-PSO algorithm shows 
more success in predicting the recovered cases rather 
than predicting the infected cases. The predicted daily 
new cases (infected and recovered) were obtained by 
subtracting the cumulative cases of the previous day 
from the cumulative cases of the concerned day. Figure 
5 illustrates the daily new cases for the period of study. 
Remarkably, good agreement can be observed for the 
new daily infected cases and the new daily recovered 
cases with greater accuracy achieved for the recovered 

cases. From both the plots and the performance 
indicators, it can be considered that the PSO is a 
powerful tool for solving the SIR model despite the 
nonlinearity and the irregularities such as nonconvexity 
and randomness that it possesses. However, despite the 
SIR-PSO model successfully fitting the Saudi Arabia 
COVID-19 data, the SIR-PSO model has the drawback 
of requiring many runs because the PSO technique is 
stochastic in nature. 

 
FF-ANN 

The other approach that was used to model the next 
day’s cases (infected, recovered and dead) for both 
daily new cases and cumulative cases was the FF-ANN. 
The main motivations for using this approach are that 
ANNs are good approximators of complex phenomena 
that are random and variable and because COVID-19 
dynamics are not yet well understood. The use of the 
FF-ANN is also intuitively justified because the 
infected cases of the previous days are known 
practically to infect new individuals on the next day. 
Prior to the main experiment, several FF-ANNs of 
various structures with various inputs were 
investigated. The performance metrics were calculated 
to assess the accuracy of each investigated FF-ANN 
structure. After several trials, the FF-ANN structure 
that was adopted for all the experiments was composed 
of a number of inputs varying from 1 to 6, and consisted 
of one input layer, two hidden layers and one output 

Figure 4. Cumulative recovered cases for the period from March 
2, 2020 to February 21, 2021. Figure 5. Daily newly infected cases for the period from March 

2, 2020 to February 21, 2021. 

Table 1. Optimal parameters of the SIR-PSO model and performance metrics of the cumulative infected and recovered cases. 
K (days-1) β (day) Cases estimation MAPE (%) R2 RMSE (case) 

2.8360×10-9 13.6131 Infected 8.6411 0.9722 21715 
Recovered 6.9837 0.9840 19324 
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layer. Linear transfer functions were adopted for all 
layers and five neurons in each layer were adopted as 
well. For training the model, the resilient-propagation 
training algorithm was used because of its fastness [40]. 
Each structure was used to model the new daily 
infected, recovered and death cases as well as their 
accumulated values. In total, 36 experiments were 
conducted. The results of the selected good runs are 
provided in Table 2. In the table, FF-ANN (d) means 
that the next day’s cases are expressed as a function of 
the d previous days’ cases.  

 
Discussion 
SIR-PSO 

It is clear that the R2 values for the infected and 
recovered cases were high at 0.9722 and 0.9840, 
respectively. As the R2 values were close to 1, this 
indicates that there is a very good agreement between 
the actual numbers reported and the numbers predicted 
by the SIR-PSO model. Moreover, both the MAPE and 
RMSE values were quite low, which confirms that the 
model had a good fit to the data. The SIR-PSO model 
suggests that the COVID-19 initial transmission rate 𝑅𝑅0 
was around 1.3435. This value was calculated from the 
SIR model parameters as follows: 𝑅𝑅0 = 𝐾𝐾 × 𝛽𝛽 ×
𝐾𝐾(0)by using the investigated model parameters and the 
initial population of suspected cases S(0) = 34,799,212. 
Although the transmission rate value is greater than 1, 
which indicates that the virus is spreading, it can be 
considered as low when compared to the global overall 
value: several studies included in [5] reported 
transmission rates ranging from 1.5 to 4. (It is also 
worth noting that the transmission rate was 1.3 for the 
common flu and 2.0 for SARS). 

 

FF-ANN 
Table 2 also shows the results for the FF-ANNs. 

From the table, the following points arise in respect of 
the performance of the FF-ANN model: 

• All the investigated FF-ANNs forecasted 
accumulated case numbers that were in good 
agreement with the actual reported numbers of 
accumulated cases. In particular, the R2 values 
for the cumulative infected cases were more 
than 0.999 for all experiments. Moreover, the 
MAPE and RMSE values for all experiments 
were low, which proves that the FF-ANNs are 
efficient in forecasting cumulative infected 
cases.  

• The accuracy of the FF-ANN forecasts 
increased with the increase in the number of 
inputs for the cumulative infected cases. This 
finding can be intuitively justified because the 
next day’s cumulative infected cases are caused 
by the cumulative infections recorded for the 
previous days.  

• The best R2 (1.0000) for the forecast of 
accumulated infected cases was obtained by 
FF-ANN (5). This indicates that, in Saudi 
Arabia, the infections of the five previous days 
are the most likely to lead to an accurate 
prediction of the number of new infections on 
the next day.  

• The results of the six FF-ANNs were not 
sufficiently meaningful in respect of the 
forecasted number of recovered cases because 
the values of the MAPE were high (overall 
around 28%). This may imply that the numbers 
of recovered cases on the previous days 

Table 2. Performance metrics of FF-ANNs. 
FF-ANN Cases MAPE (%) R2 RMSE (case) FF-ANN Cases MAPE (%) R2 RMSE 

(case) 

FF-ANN 
(1) 

New I 8.0352 0.9803 162 

FF-ANN 
(2) 

New I 8.0283 0.9805 161.52 
Accumulated I 0.3882 0.9999 1,118 Accumulated I 0.4547 0.9999 1316 

New R 35.8561 0.7094 651 New R 31.4098 0.7466 608.15 
Accumulated R 0.4568 0.9999 1,215 Accumulated R 0.1721 1.0000 654.14 

New D 13.4056 0.9323 3.66 New D 11.6873 0.9520 3.0843 
Accumulated D 0.4081 1.0000 15.65 Accumulated D 0.1047 1.0000 4.8594 

FF-ANN 
(3) 

New I 8.0043 0.9805 161.4 

FF-ANN 
(4) 

New I 8.0263 0.9814 157.63 
Accumulated I 0.4612 0.9999 1341 Accumulated I 0.0365 1.0000 160.75 

New R 29.7187 0.7539 599.5 New R 29.2695 0.7562 596.99 
Accumulated R 1.1130 0.9996 2846 Accumulated R 0.1373 1.0000 599.75 

New D 11.7337 0.9515 3.095 New D 11.4861 0.9524 3.0649 
Accumulated D 0.8517 0.9998 32.56 Accumulated D 0.0658 1.0000 3.4543 

FF-ANN 
(5) 

New I 8.0305 0.9813 158.0 

FF-ANN 
(6) 

New I 6.0292 0.9794 154.948 
Accumulated I 0.0694 1.0000 300.5 Accumulated I 0.4182 0.9999 1123 

New R 27.567 0.7721 577.4 New R 22.7652 0.7582 570.19 
Accumulated R 0.2704 0.9999 1061 Accumulated R 1.1669 0.9995 2893 

New D 11.3622 0.9526 3.055 New D 9.2696 0.9554 2.9069 
Accumulated D 1.2289 0.9996 47.22 Accumulated D 0.8613 0.9997 36.612 

I: Infected; R: Recovered; D: Dead. 
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probably has no effect on the recoveries of the 
next day.  

• All the tested FF-ANNs were efficient in 
predicting the cumulative number as well as the 
daily new number of deaths because the 
function of deaths of the previous days had R2 
values that were almost close to 1 and the 
values of the MAPE and RMSE were small. 
Thus, the FF-ANN model may explain well the 
degree of lethality of COVID-19 in Saudi 
Arabia.  

• As the negative consequences caused by 
COVID-19 appear, respectively, in the number 
of infected cases and number of deaths, the 
scatter plots of the best FF-ANN (i.e., FF-ANN 
(5) which models the next day’s numbers as a 
function of the previous 5 days’ numbers) are 
presented in Figure 6 and Figure 7. 

Both the SIR-PSO and FF-ANN models are 
considered to be superior to other methods in the 
COVID-19 modeling literature. In fact, SIR-PSO 
showed good performance in providing sub-optimal 
solutions for the SIR model parameters with limited 
computational resources. Also, the FF-ANN model 
yielded good agreement in terms of its predicted 
numbers of infections (daily and accumulated) against 
the actual records. Importantly, both of the developed 
models are generic and can be used (after a few 
manipulations) for other case studies. 

 
Conclusions 

This study focused on the modeling of COVID-19 
dynamics in Saudi Arabia for the period from March 2, 

2020 to February 21, 2021. The SIR model calibrated 
by a PSO technique, and the FF-ANN model were 
implemented to predict the number of next-day 
infections, recoveries and deaths due to COVID-19. 
The results showed that both of the models were 
efficient in modeling COVID-19 dynamics in Saudi 
Arabia for the considered period. However, COVID-19 
has a fluctuating behavior which makes the production 
of accurate forecasts for the next day (more than 1) a 
difficult task. The severity of COVID-19 is measured 
by the number of cumulative infections as well as the 
number of cumulative deaths. In the case of the number 
of infections, it is better to use the SIR-PSO model 
because it does not require a lot of calibration effort, 
computational time and memory. However, SIR-PSO 
model was not able to accurately predict the cumulative 
number of deaths. So, it would seem preferable to use 
the FF-ANN model to predict the number of deaths. On 
the other hand, the forecasting of the cumulative 
recovered cases can be performed by either model. 
Overall, the performance results of the developed 
models indicate that they can be used by local 
authorities to first understand the dynamics of COVID-
19 and second implement efficient measures to 
eradicate the disease. 
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Figure 6. Scatter plot of cumulative infected cases (reported and 
forecasted) provided by the FF-ANN (5) structure. 

Figure 7. Scatter plot of cumulative deaths (reported and 
forecasted) provided by the FF-ANN (5) structure. 
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