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obviously R(0) = 0 as of the same day. The contact rate 
K upper limit is chosen deliberately as Kmax = 
1/35000000. The upper and lower limits of the 
characteristic duration of the disease, 𝛽𝛽 , are chosen, 
respectively, as 1 day and 14 days which is considered 
by several studies as the incubation period of COVID-
19 during which an infected individual can transfer the 
virus to another susceptible individual [27]. The 
model’s two parameters are tuned optimally following 
the abovementioned Steps 1–5. The PSO algorithm is 
stochastic. Therefore, it has to be run several times. In 
this paper, only the results of the best run are reported. 
The performance metrics of the SIR-PSO model as well 
as the optimal values for the SIR model parameters are 
summarized in Table 1. 

The plots of the actual and forecasted (by SIR-PSO) 
cumulative infected and recovered cases are shown in 
Figure 3 and Figure 4, respectively. It can be seen that 
the curves of the forecasted and recorded cases are 
almost similar. However, the SIR-PSO algorithm shows 
more success in predicting the recovered cases rather 
than predicting the infected cases. The predicted daily 
new cases (infected and recovered) were obtained by 
subtracting the cumulative cases of the previous day 
from the cumulative cases of the concerned day. Figure 
5 illustrates the daily new cases for the period of study. 
Remarkably, good agreement can be observed for the 
new daily infected cases and the new daily recovered 
cases with greater accuracy achieved for the recovered 

cases. From both the plots and the performance 
indicators, it can be considered that the PSO is a 
powerful tool for solving the SIR model despite the 
nonlinearity and the irregularities such as nonconvexity 
and randomness that it possesses. However, despite the 
SIR-PSO model successfully fitting the Saudi Arabia 
COVID-19 data, the SIR-PSO model has the drawback 
of requiring many runs because the PSO technique is 
stochastic in nature. 

 
FF-ANN 

The other approach that was used to model the next 
day’s cases (infected, recovered and dead) for both 
daily new cases and cumulative cases was the FF-ANN. 
The main motivations for using this approach are that 
ANNs are good approximators of complex phenomena 
that are random and variable and because COVID-19 
dynamics are not yet well understood. The use of the 
FF-ANN is also intuitively justified because the 
infected cases of the previous days are known 
practically to infect new individuals on the next day. 
Prior to the main experiment, several FF-ANNs of 
various structures with various inputs were 
investigated. The performance metrics were calculated 
to assess the accuracy of each investigated FF-ANN 
structure. After several trials, the FF-ANN structure 
that was adopted for all the experiments was composed 
of a number of inputs varying from 1 to 6, and consisted 
of one input layer, two hidden layers and one output 

Figure 4. Cumulative recovered cases for the period from March 
2, 2020 to February 21, 2021. Figure 5. Daily newly infected cases for the period from March 

2, 2020 to February 21, 2021. 

Table 1. Optimal parameters of the SIR-PSO model and performance metrics of the cumulative infected and recovered cases. 
K (days-1) �� (day) Cases estimation MAPE (%) R2 RMSE (case) 

2.8360×10-9 13.6131 Infected 8.6411 0.9722 21715 
Recovered 6.9837 0.9840 19324 
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layer. Linear transfer functions were adopted for all 
layers and five neurons in each layer were adopted as 
well. For training the model, the resilient-propagation 
training algorithm was used because of its fastness [40]. 
Each structure was used to model the new daily 
infected, recovered and death cases as well as their 
accumulated values. In total, 36 experiments were 
conducted. The results of the selected good runs are 
provided in Table 2. In the table, FF-ANN (d) means 
that the next day’s cases are expressed as a function of 
the d previous days’ cases.  

 
Discussion 
SIR-PSO 

It is clear that the R2 values for the infected and 
recovered cases were high at 0.9722 and 0.9840, 
respectively. As the R2 values were close to 1, this 
indicates that there is a very good agreement between 
the actual numbers reported and the numbers predicted 
by the SIR-PSO model. Moreover, both the MAPE and 
RMSE values were quite low, which confirms that the 
model had a good fit to the data. The SIR-PSO model 
suggests that the COVID-19 initial transmission rate 𝑅𝑅0 
was around 1.3435. This value was calculated from the 
SIR model parameters as follows: 𝑅𝑅0 = 𝐾𝐾 × 𝛽𝛽 ×
𝑆𝑆(0)by using the investigated model parameters and the 
initial population of suspected cases S(0) = 34,799,212. 
Although the transmission rate value is greater than 1, 
which indicates that the virus is spreading, it can be 
considered as low when compared to the global overall 
value: several studies included in [5] reported 
transmission rates ranging from 1.5 to 4. (It is also 
worth noting that the transmission rate was 1.3 for the 
common flu and 2.0 for SARS). 

 

FF-ANN 
Table 2 also shows the results for the FF-ANNs. 

From the table, the following points arise in respect of 
the performance of the FF-ANN model: 

• All the investigated FF-ANNs forecasted 
accumulated case numbers that were in good 
agreement with the actual reported numbers of 
accumulated cases. In particular, the R2 values 
for the cumulative infected cases were more 
than 0.999 for all experiments. Moreover, the 
MAPE and RMSE values for all experiments 
were low, which proves that the FF-ANNs are 
efficient in forecasting cumulative infected 
cases.  

• The accuracy of the FF-ANN forecasts 
increased with the increase in the number of 
inputs for the cumulative infected cases. This 
finding can be intuitively justified because the 
next day’s cumulative infected cases are caused 
by the cumulative infections recorded for the 
previous days.  

• The best R2 (1.0000) for the forecast of 
accumulated infected cases was obtained by 
FF-ANN (5). This indicates that, in Saudi 
Arabia, the infections of the five previous days 
are the most likely to lead to an accurate 
prediction of the number of new infections on 
the next day.  

• The results of the six FF-ANNs were not 
sufficiently meaningful in respect of the 
forecasted number of recovered cases because 
the values of the MAPE were high (overall 
around 28%). This may imply that the numbers 
of recovered cases on the previous days 

Table 2. Performance metrics of FF-ANNs. 
FF-ANN Cases MAPE (%) R2 RMSE (case) FF-ANN Cases MAPE (%) R2 RMSE 

(case) 

FF-ANN 
(1) 

New I 8.0352 0.9803 162 

FF-ANN 
(2) 

New I 8.0283 0.9805 161.52 
Accumulated I 0.3882 0.9999 1,118 Accumulated I 0.4547 0.9999 1316 

New R 35.8561 0.7094 651 New R 31.4098 0.7466 608.15 
Accumulated R 0.4568 0.9999 1,215 Accumulated R 0.1721 1.0000 654.14 

New D 13.4056 0.9323 3.66 New D 11.6873 0.9520 3.0843 
Accumulated D 0.4081 1.0000 15.65 Accumulated D 0.1047 1.0000 4.8594 

FF-ANN 
(3) 

New I 8.0043 0.9805 161.4 

FF-ANN 
(4) 

New I 8.0263 0.9814 157.63 
Accumulated I 0.4612 0.9999 1341 Accumulated I 0.0365 1.0000 160.75 

New R 29.7187 0.7539 599.5 New R 29.2695 0.7562 596.99 
Accumulated R 1.1130 0.9996 2846 Accumulated R 0.1373 1.0000 599.75 

New D 11.7337 0.9515 3.095 New D 11.4861 0.9524 3.0649 
Accumulated D 0.8517 0.9998 32.56 Accumulated D 0.0658 1.0000 3.4543 

FF-ANN 
(5) 

New I 8.0305 0.9813 158.0 

FF-ANN 
(6) 

New I 6.0292 0.9794 154.948 
Accumulated I 0.0694 1.0000 300.5 Accumulated I 0.4182 0.9999 1123 

New R 27.567 0.7721 577.4 New R 22.7652 0.7582 570.19 
Accumulated R 0.2704 0.9999 1061 Accumulated R 1.1669 0.9995 2893 

New D 11.3622 0.9526 3.055 New D 9.2696 0.9554 2.9069 
Accumulated D 1.2289 0.9996 47.22 Accumulated D 0.8613 0.9997 36.612 

I: Infected; R: Recovered; D: Dead. 
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probably has no effect on the recoveries of the 
next day.  

• All the tested FF-ANNs were efficient in 
predicting the cumulative number as well as the 
daily new number of deaths because the 
function of deaths of the previous days had R2 
values that were almost close to 1 and the 
values of the MAPE and RMSE were small. 
Thus, the FF-ANN model may explain well the 
degree of lethality of COVID-19 in Saudi 
Arabia.  

• As the negative consequences caused by 
COVID-19 appear, respectively, in the number 
of infected cases and number of deaths, the 
scatter plots of the best FF-ANN (i.e., FF-ANN 
(5) which models the next day’s numbers as a 
function of the previous 5 days’ numbers) are 
presented in Figure 6 and Figure 7. 

Both the SIR-PSO and FF-ANN models are 
considered to be superior to other methods in the 
COVID-19 modeling literature. In fact, SIR-PSO 
showed good performance in providing sub-optimal 
solutions for the SIR model parameters with limited 
computational resources. Also, the FF-ANN model 
yielded good agreement in terms of its predicted 
numbers of infections (daily and accumulated) against 
the actual records. Importantly, both of the developed 
models are generic and can be used (after a few 
manipulations) for other case studies. 

 
Conclusions 

This study focused on the modeling of COVID-19 
dynamics in Saudi Arabia for the period from March 2, 

2020 to February 21, 2021. The SIR model calibrated 
by a PSO technique, and the FF-ANN model were 
implemented to predict the number of next-day 
infections, recoveries and deaths due to COVID-19. 
The results showed that both of the models were 
efficient in modeling COVID-19 dynamics in Saudi 
Arabia for the considered period. However, COVID-19 
has a fluctuating behavior which makes the production 
of accurate forecasts for the next day (more than 1) a 
difficult task. The severity of COVID-19 is measured 
by the number of cumulative infections as well as the 
number of cumulative deaths. In the case of the number 
of infections, it is better to use the SIR-PSO model 
because it does not require a lot of calibration effort, 
computational time and memory. However, SIR-PSO 
model was not able to accurately predict the cumulative 
number of deaths. So, it would seem preferable to use 
the FF-ANN model to predict the number of deaths. On 
the other hand, the forecasting of the cumulative 
recovered cases can be performed by either model. 
Overall, the performance results of the developed 
models indicate that they can be used by local 
authorities to first understand the dynamics of COVID-
19 and second implement efficient measures to 
eradicate the disease. 
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Figure 6. Scatter plot of cumulative infected cases (reported and 
forecasted) provided by the FF-ANN (5) structure. 

Figure 7. Scatter plot of cumulative deaths (reported and 
forecasted) provided by the FF-ANN (5) structure. 
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