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Abstract 
Introduction: Shiga toxin-producing Escherichia coli (STEC) O157:H7 is associated with intestinal infection in humans and is considered an 
important cause of food-borne diseases. The aim of the study was to assess the incidence of E. coli O157:H7 in fecal samples of healthy cattle 
collected in slaughterhouses (n = 160) and from five farms (n = 100). 
Methodology: E. coli isolates were detected on MacConkey agar. A total of 236 E. coli isolates were recovered from fecal samples of healthy 
cattle. We used sorbitol MacConkey medium to detect non-sorbitol fermenting colonies. These bacteria were examined for the presence of 
O157:H7 antigen by latex agglutination. The isolation of E. coli O157:H7 has been confirmed with PCR amplification of rfbEO157 and fliCH7 
specific genes for serogroup O157 and with multiplex PCR of stx1, stx2, eaeA, and ehxA. All isolates were examined for their susceptibility to 
21 antibiotics by the disc diffusion method. 
Results: Of the 236 E. coli isolates, 4.2% (10/236) were positive for STEC O157:H7. Shiga toxin gene (stx2) and ehxA were present in 70% of 
isolates, stx1 and eae were confirmed in 60% of the isolates. Other virulence factors screened (fimH, sfa/focDE, cdt3, traT, iutA, and hlyA) 
were present among the 10 isolates. All E. coli O157:H7 isolates were sensitive to amoxicillin/clavulanic acid, cefotaxime, cefepime, 
aztreonam, colistin, and sulfamethoxazole/trimethoprim. All isolates belong to the phylo-group E. 
Conclusions: This is the first study of the incidence of E. coli O157:H7 in cattle in Tunisia. Our finding proves the existence of STEC O157:H7 
in healthy animals producing food for human consumption which could be a source of food-borne disease. 
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Introduction 

Escherichia coli is a common bacteria of the 
intestinal microbiota and an important pathogen in 
animals and human [1]. The pathogenic E. coli strains 
are classified into extraintestinal pathogenic strains 
(causing urinary tract infection, meningitis, diverse 
intra-abdominal infections, and pneumonia) and 
intestinal pathogenic (diarrheagenic) strains that cause 
gastroenteritis [2]. According to virulence 
determinants, diarrheagenic E. coli (DEC) are 
categorized as enterotoxigenic (ETEC), 
enterohemorrhagic (EHEC), enteroinvasive (EIEC), 
enteroaggregative (EAggEC), diffusely adherent 
(DAEC), and enteropathogenic E. coli (EPEC) [3]. 

Strains belonging to the subgroup of Shiga toxin-
producing strains (STEC) are distinguished by certain 
EHEC serotypes, which are linked to outbreaks in 
humans and cause clinical sickness. STEC is a food-
borne bacteria which have been associated with many 

epidemics across continents especially serotype 
O157:H7 [4]. Strains have been isolated from feces of 
healthy ruminants like cattle, goats, and sheep which 
can be natural reservoirs of these pathogens [5].  

E. coli O157:H7 is the dominant serotype of the 
STEC group associated with human infections. The first 
identification of this serotype as a pathogen was in 1982 
during an outbreak of hemorrhagic colitis in Oregon 
and Michigan, U.S.A. [6]. STEC O157:H7 can cause 
acute infections with a spectrum of human illnesses 
ranging from abdominal pain and bloody diarrhea to 
fatal diseases, like hemolytic-uremic syndrome (HUS) 
and hemorrhagic colitis (HC). The main STEC O157 
infections are food-borne, particularly concerning cattle 
sources [7]. 

The STEC strains possess Shiga toxins (stx1 and 
stx2) genes that are considered the major virulence 
factors of these strains. Stx2 is associated more closely 
with the HUS sickness than stx1 [8]. Other important 
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virulence determinants are: intimin protein, encoded by 
eae gene and important for attaching and effacing 
activity within the colonization of host intestinal 
mucosa and causing severe human infections, and 
enterohemolysin  encoded by the plasmid- and phage-
carried enterohemolysin (ehxA) gene [9].  

STEC O157:H7 isolates have been detected in 
North Africa from humans, animals, and food products. 
An Algerian study identified a rate of 7% in the bovine 
carcasses [10]. In Morocco, the frequency of STEC 
O157:H7 was 9%, 9.1%, and 11.1% from raw meat 
products, dairy products, and marketed meat 
respectively [11,12]. A Tunisian study confirmed that 
3.4% of E. coli isolates among human stool samples 
were STEC and the rate of E. coli O157:H7 was 0.3% 
[9]. In Egypt, a survey confirmed that the prevalence 
among beef samples, chicken samples, and lamb 
samples was 6%, 4%, and 4% respectively [13]. 

An increasing number of STEC O157 outbreaks are 
related to the human consumption of fruits and 
vegetables contaminated with domestic or wild animal 
feces. E. coli O157:H7 is transmitted to humans by the 
consumption of contaminated foods like raw meat, 
undercooked meat, and raw milk. Water and foods 
contaminated by fecal material and cross-
contamination through food production and processing 
will lead to STEC infection [14]. Therefore, the 
objective of our study was to assess the incidence, 
virulence genes, and antimicrobial resistance profiles of 
E. coli O157:H7 in fecal samples of healthy cattle. To 
the best of our knowledge, this is the first report of E. 
coli O157:H7 in healthy cattle in Tunisia. 

 
Methodology 
Samples Collection 

The samples analysed in this study were collected 
as part of a research project dedicated to the study of 
antibiotic resistance of bacteria isolated from the main 
five slaughterhouses in the region of the greater Tunis 
and from cattle farms located in the governorate of 
Bizerte, which provides 11% of the national production 
of red meat. 

All the feces samples were collected by rectal 
swabbing, by rolling-rubbing the rectal mucosa. There 
are two types of samples; firstly, fecal samples from 
160 cattle intended for slaughter were collected 
between December 2016 and April 2017. These 
samples were collected from five slaughterhouses in the 
greater Tunis, designated as A, B, C, D, and E. In the 
second samples category, a total of 100 fecal samples 
were gathered from healthy cattle between March and 
November 2018 from cattle farms located in the 

governorate of Bizerte. Samples were transported 
appropriately to the laboratory in ice-cooled containers 
for bacterial isolation and further investigations.  

 
Selective isolation of E. coli O157:H7 

Fecal samples were enriched in buffered peptone 
water overnight at 37 °C, then 10 µL were cultured by 
the streak plate technique on MacConkey agar and 
incubated for 18 to 24 hours at 37 °C. One putative 
colony was subcultured from each plate onto brain heart 
infusion agar for confirmation as E. coli. The 
identification of E. coli colonies was performed by API 
20E galleries (bioMérieux). The bacterial colonies were 
cultivated onto sorbitol MacConkey agar (Oxoid) 
supplemented with cefixime-tellurite (CT-SMAC) and 
incubated for 18–24 hours at 37 °C. On this medium, 
most STEC O157:H7 are distinct from other STEC by 
their inability to ferment sorbitol. On each plate with 
sorbitol non-fermenting (straw color or colorless) 
colonies, one colony was subcultured as probably E. 
coli O157.  

 
Agglutination test of O157 

Each non-sorbitol fermenting colony isolated on 
SMAC plates was examined for the existence of the 
O157 antigens by agglutination latex reagent 
(DrySpot™ E. coli O157 Latex Agglutination Test, 
Oxoid). 

 
Affirmation of E. coli O157 by PCR 

All non-sorbitol fermenting E. coli isolated and 
O157 agglutination-positive were examined for the 
existence of rfbEO157 gene and fliCH7 by simplex 
PCR [15]. The PCR condition was as follows: initial 
denaturation at 94 °C for 5 minutes; 35 cycles of 
denaturation at 94 °C for 45 seconds, annealing at a 
specific temperature for 45 seconds (Table 1), extension 
at 72 °C for 45 seconds; and a final extension (72 °C, 7 
minutes). 

A multiplex PCR for stx1, stx2, uidA, ehxA, and eae 
was achieved for the O157:H7 strains, and primers are 
listed in table 1 [16]. The thermal cycling program of 
multiplex PCR was as follows: the denaturation: 95 °C 
for 5 minutes, followed by 25 cycles of 95 °C for 1 
minute, annealing at 56 °C for 1 minute, the extension 
at 72 °C for 1 minute, and the final extension at 72 °C 
for 5 minutes. The gel electrophoresis was used to 
separate PCR products by using a 2 % agarose gel in a 
TBE buffer containing ethidium bromide. 

The stx1 and stx2 amplifications were sequenced in 
order to prove that the amplicon matched the stx1 and 
stx2 sequences. The gained sequences were aligned 
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with the data sequences in NCBI 
(http://www.ncbi.nlm.nih.gov). 

 
Virulence genes 

PCR assay was used to study the presence of 13 
virulence genes; cdt3 (cytolethal distending toxin), cnf1 
(cytotoxic necrotizing factor), hly (hAemolysin), aer 
(aerobactin system), papA (P fimbriae), bfpA (bundle 
forming pilus), papG allele III, fimH (type 1 fimbriae), 
traT (serum survival gene), ibeA (invasion of brain 
endothelium), sfa/foc (S and F1C fimbriae), iutA 
(aerobactin system) and fyuA (yersiniabactin) [17] and 
resolved on agarose gels as described above.  

 
Antimicrobial susceptibility testing 

The antimicrobial susceptibility was determined by 
the disk-diffusion method on Mueller-Hinton agar 
plates (BioRad, Marne la Coquette, France) as 
recommended by the European Committee on 
Antimicrobial Susceptibility Testing guidelines 
(EUCAST) [18] using antibiotic disc panels comprising 

(μg/disk): twelve β-lactam [amoxicillin (25), 
amoxicillin/clavulanic acid (20/10), 
ticarcillin/clavulanic acid (75/10), cefotaxime (30), 
ceftazidime (30), cefepime (30), cefoxitin (30), 
aztreonam (30) ertapenem (10), piperacillin (30), 
cephalothin (30), cefuroxime (30)], and nine non-β-
lactams [chloramphenicol (30), florfenicol (30), 
gentamicin (15), streptomycin (10), colistin (50), 
nalidixic acid (30), enrofloxacin (5), tetracycline (30) 
and sulfamethoxazole/trimethoprim (1.25/23.75)]. 

 
Detection of Phylogenetic groups 

The phylogenetic groups (A, B1, B2, C, D, E, F) 
were detected among the isolates by the quadruplex 
PCR method developed by Clermont et al. [19]. The 
phylogroups were determined based on the presence of 
the chuA, yjaA genes, and TspE4-C2 fragment detected 
by quadruplex PCR (A, B1, B2, D), and C, E were 
further identified using specific primer sets (Table 1). 

 

Table 1. Primers for PCR amplification of E. coli O157:H7. 

PCR reaction Gene Primer sequence (5’-3’) 
Size of PCR 

product 
(bp) 

Annealing 
temperature 

(°C) 
Reference 

Phylogenetic genes 

Quadruplex 

chuA chuA.1b: ATGGTACCGGACGAACCAAC 288 60 Clermont et al., 
2013 [17] chuA.2: TGCCGCCAGTACCAAAGACA 

yjaA yjaA.1b: CAAACGTGAAGTGTCAGGAG 211 60 Clermont et al., 
2013 [17] yjaA.2b: AATGCGTTCCTCAACCTGTG 

TspE4C2 TspE4C2.1b: CACTATTCGTAAGGTCATCC 152 60 Clermont et al., 
2013 [17] TspE4C2.2b: AGTTTATCGCTGCGGGTCGC 

arpA AceK.f: AACGCTATTCGCCAGCTTGC 400 60 Clermont et al., 
2013 [17] AceK.r: TCTCCCCATACCGTACGCTA 

Group E arpA ArpAgpE.f: GATTCCATCTTGTCAAAATATGCC 301 57 Clermont et al., 
2013 [17] ArpAgpE.r: GAAAAGAAAAAGAATTCCCAAGAG 

Group C trpA trpAgpC.1: AGTTTTATGCCCAGTGCGAG 219 59 Clermont et al., 
2013 [17] trpAgpC.2: TCTGCGCCGGTCACGCCC 

Internal control trpA trpBA.f: CGGCGATAAAGACATCTTCAC 489 57 Clermont et al., 
2013 [17] trpBA.r: GCAACGCGGCCTGGCGGAAG 

Virulence factors 

Shiga toxin stx1 F: CAGTTAATGTGGTGGCGAAGG 348 56 Zhang et al., 
2006 [18] R: CACCAGACAATGTAACCGCTG 

Shiga toxin stx2 F: ATCCTATTCCCGGGAGTTTACG 584 56 Zhang et al., 
2006 [18] R: GCGTCATCGTATACACAGGAGC 

Enterohaemolysin ehxA F: GCATCATCAAGCGTACGTTCC 534 56 Al-Ajmi et al., 
2020 [19] R: AATGAGCCAAGCTGGTTAAGCT 

Enteropathogenic 
attachment and 
effacement 

eae 
F : TGCGGCACAACAGGCGGCGA 

629 56 Bannon et al., 
2016 [20] R : CGGTCGCCGCACCAGGATTC 

Others 

Part of O-antigen 157 O157 F: CGGACATCCATGTGATATGG 259 52 Gannon et al., 
1997 [15] R: TTGCCTATGTACAGCTAATCC 

Encoding H7 flagellar 
antigens fliCH7 F: GCGCTGTCGAGTTCTATCGAGC 625 60 Gannon et al., 

1997 [15] R: CAACGGTGACTTTATCGCCATTCC 

Beta-glucuronidase uidA F: ATCACCGTGGTGACGCATGTCGC 486 56 Akanbi et al., 
2011 [21] R: CACCACGATGCCATGTTCATCTGC 
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Results 
In our study, 236 E. coli isolates were collected 

from the examination of 250 fecal samples of healthy 
cattle in Tunisia. Out of 236 E. coli isolates, 159 were 
from cattle in slaughterhouses and 77 from cattle farms. 
Of these E. coli strains, 100% were positive for methyl-
red, lactose, and indol, and 100% were negative for 
urease, citrate, and H2S production. The results revealed 
that 10 E. coli were sorbitol nonfermenting on CT-
SMAC and these 10 (4.2%) strains were E. coli 
O157:H7. Out the 10 strains; 6 isolates were isolated 
from healthy cattle in slaughterhouses and the other 
from healthy cattle on farms. 

All E. coli O157:H7 isolates were susceptible to 
amoxicillin/clavulanic acid, cefotaxime, cefepime, 
aztreonam, colistin, and 
sulfamethoxazole/trimethoprim. More than 80% of 
isolates were susceptible to ampicillin, cefoxitin, 
ticarcillin/clavulanic acid, ceftazidime, ertapenem, 
nalidixic acid, florfenicol, chloramphenicol, and 
enrofloxacin. However, resistance to cefuroxime, 
streptomycin, and tetracycline was 50%, 40%, and 30% 
respectively (Figure 1). 

The confirmation of E. coli O157 by latex 
agglutination testing revealed that all isolates were 
O157 positive. All of these isolates were confirmed as 
E. coli O157:H7 via screening of rfbO157 and flicH7 
genes by specific primers. 

PCR analysis of the 10 E. coli O157 isolates reveals 
that uidA, flicH7, and O157 genes were present in all 
strains. Stx2 and ehxA genes were present in 7 isolates 
(70%), while stx1 and eae were confirmed in six 
isolates (60%). 

We found six isolates carrying three virulence genes 
as follows: three strains harbored stx2, stx1 and ehxA, 
two strains harbored stx2, eae, and ehxA; one isolate 
harbored stx1, eae and ehxA (Table 2). All E. coli O157 
isolates belong to the phylogroup E. 

The O157 isolates were further tested for 13 
virulence factors. All isolates carried at least one 

virulence gene tested. Out of 10 isolates, 60% carried 
more than three virulence genes tested. FimH was the 
most frequent virulence gene and was detected in 90% 
(9/10) of the isolates, followed by sfa/focDE in 60%. 
The frequency of cdt3, traT, and iutA among the isolates 
was 50%, 50%, and 40% respectively, whereas, hly was 
found in one isolate (Table 2). None of the isolates 
harbored cnf1, aer, papA, bfpA, papG allele III, ibeA, 
or fyuA. 

 
Discussion 

Human infections caused by STEC O157:H7 are 
associated with food of animal origin or plants 
contaminated with the feces of these animals. In 
particular, cattle, sheep, and goats have been 
demonstrated as the main natural reservoirs for STEC 
O157:H7 and play an important role in the public health 
concern [7]. This study was conducted to evaluate the 
incidence of E. coli O157:H7, antimicrobial profiles, 
and virulence genes in fecal samples of healthy cattle 
collected from slaughterhouses and cattle farms in 

Table 2. Distribution of virulence genes and specific genes detected by PCR. 
Bacterial 

code 
Specific genes STEC virulence markers Other virulence factors uidA O157 fliCH7 stx1 stx2 eae ehxA 

T46 + + + + + - + cdt3, traT, fimH, sfa/focDE 
T48 + + + + + - + cdt3, sfa/focDE 
T51 + + + - + + - cdt3, fimH, sfa/focDE, iutA 

T109 + + + - + + + cdt3, fimH, sfa/focDE 
T125 + + + - + + + hly, cdt3, traT, fimH, sfa/focDE 
T132 + + + + + - + fimH 
BS10 + + + + - + + fimH 
BS37 + + + - + - + traT, sfa/focDE, fimH, iutA 
BS40 + + + + - + - traT, fimH, iutA 
BS43 + + + + - + - traT, fimH, iutA 

 

Figure 1. Antimicrobial susceptibility of E. coli O157:H7 
isolates. 
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Tunisia. This is the first report concerning the presence 
of E. coli O157:H7 in cattle in Tunisia. 

Our findings demonstrated that among 236 E. coli 
isolates, ten E. coli O157:H7 were detected at a rate of 
4.2%. These isolates were cultured on CT-SMAC agar 
as non-sorbitol fermenters and were confirmed as 
STEC O157 by using latex agglutination and PCR. This 
is consistent with previous research that found E. coli 
O157: H7 in cattle feces samples and carcass swabs in 
slaughterhouses, with rates of 4.7% and 2.7%, 
respectively, in Ethiopia [7]. In a study in United Arab 
Emirates, the frequency of E. coli O157:H7 among 
slaughtered cattle was 1.4% [20]. An Algerian study 
reported an incidence of E. coli O157 in more than 7% 
of bovine carcasses [10]. In Morocco, the incidence of 
E. coli O157:H7 in dairy products and marketed meat 
products was 9.1% and 11.1% respectively [12]. In 
Tunisia, 327 E. coli strains were isolated from diarrheic 
and non-diarrheic people. By using PCR techniques, it 
has been demonstrated that 11 isolates (3.4%) express 
the stx1 and stx2 genes encoding for STEC and only one 
(0.3%) was confirmed as E. coli O157:H7 [9].  

In this study, the rate of these bacteria among 
healthy cattle in slaughterhouses was higher than that of 
healthy cattle from farms, maybe the stress of 
transporting cattle from the farm to the slaughterhouse 
results in increased bacterial excretion. McCluskey et 
al. [21] confirmed that there were significantly higher 
rates of E. coli O157 in lambs that were transported and 
held for ≥ 18 hours. Furthermore, animals were not 
perfectly fed during the transition and holding prior to 
slaughter; withholding of food has the potential effect 
on colonization with E. coli O157.  

In the present study, one putative colony per sample 
was selected for confirmation as E. coli O157:H7. 
Examination of up to ten colonies per plate [22] may 
have led to more O157:H7 isolates and this criterion 
was confirmed by many studies. Furthermore, some 
characteristics of these bacteria can change during lab 
manipulations. For example, ehxA gene is located on a 
plasmid that could be lost either naturally in the animal 
host, or during lab manipulations resulting in increased 
sensitivity of the method. On the other hand, 
immunomagnetic separation would certainly have 
improved the rate of isolation of STECs.  

In Africa, the highest incidence of cattle was 31.2% 
as represented in two studies [23,24]. In Asian 
countries, the highest rate was 12.22% in Jordanian 
cattle [25] and the lowest (0.13%) was evaluated in 
cattle from Taiwan [26]. According to a meta-analysis 
of 40 studies, in several states of the USA the estimated 

incidence was 7.60% [27] while in California it was 
highly variable, from 0 to 90% [28]. 

Healthy cattle can be the main reservoir for 
prospecting human infection and play an important role 
in the epidemiology of STEC infections. Moreover, 
most human diseases caused by STEC bacteria 
originate from cattle [29]. The existence of STEC 
O157:H7 in our study among animal feces in 
slaughterhouses highlighted the possible contamination 
of meat products prepared for human consumption. On 
the other hand, identifying the STEC O157:H7 in 
humans is very important for public health objectives, 
like identifying outbreaks. Underlining the great 
scarcity of studies in Tunisia, the identification of 
STEC O157:H7 and non-O157 by Al-Gallas et al. [9] 
among humans has important benefits for public health 
and proves the need for epidemiological surveys on 
STEC infection in this country. The detection of E. coli 
O157:H7 in cattle and humans in Tunisia calls for 
further epidemiological assessment to detect whether a 
case is part of an outbreak, the outbreak source, and the 
spread prevention of it. 

Antimicrobial resistance is considered a global 
health threat. Animal products have been demonstrated 
as reservoirs of antimicrobial resistant bacteria because 
the same genes encoded for antimicrobial resistance 
were demonstrated in the bacteria of animal food and in 
humans [30]. 

Our results show that all E. coli O157:H7 isolates 
were susceptible to amoxicillin/clavulanic acid, 
cefotaxime, cefepime, aztreonam, colistin, and 
sulfamethoxazole/trimethoprim. Previous studies in 
animals reported different antibiotic resistance profiles 
of E. coli O157:H7 isolates. One study reported that in 
Hawassa (Ethiopia), all E. coli O157:H7 isolates were 
susceptible to cefotaxime, ceftriaxone, gentamycin, 
kanamycin, and nalidixic acid [7]. A further report from 
United Arab Emirates showed that all isolates were 
susceptible to cefotaxime, chloramphenicol, 
ciprofloxacin, norfloxacin, and polymyxin B [20]. 
However, a Saudia study reported that the isolates were 
resistant to all tested antibiotics [31]. One study from 
Iran revealed that the resistance rate to gentamycin, 
ampicillin, erythromycin, amoxicillin, and tetracycline 
was 56.0%, 48.0%, 40.0%, 16.0%, and 12.0% 
respectively [32]. A UK study in humans showed that 
the resistance profile among 327 STEC O157 to 
ampicillin, streptomycin, trimethoprim/sulphonamide, 
and tetracycline was 5.8% followed by the resistance 
rate to ciprofloxacin (2.6%) and chloramphenicol 
(2.1%) [33]. 
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A study conducted in Latin American countries has 
documented 78.5% sensitivity to all the antimicrobial 
agents in 14 O157 STEC strains from cattle. Resistance 
to streptomycin, trimethoprim, and sulfonamide was 
found in three strains [34]. 

Antimicrobial resistance variation might be due to 
the expression of resistance genes among bacteria in 
animals, the environment, or humans and this variation 
in resistance rates may also be an indicator of animal 
husbandry and agricultural use of antibiotics and 
antimicrobials [35]. 

On the other hand, more than 40% of the isolates 
were resistant to cefuroxime and streptomycin, perhaps 
via co-resistance or cross-resistance or inappropriate or 
wide use of these drugs for prophylactic purposes and 
treating infections. In fact, no multi-drug resistance was 
observed in all the strains tested, in agreement with a 
Turkish study, where a low resistance rate to 
cephalothin, streptomycin, and nalidixic acid, was 
detected [36]. Vali et al. [37] showed no multi-drug 
resistance among E. coli O157 strains isolated from 
beef cattle farms and identified a low prevalence of 
resistance to cephalothin, sulphamethoxazole, 
streptomycin, sulphonamide compounds, and nalidixic 
acid. However, some studies have demonstrated that 
there has been an increase in the antimicrobial 
resistance of STEC O157:H7 [38,39]. Previous studies 
conducted around the world revealed that the majority 
of antibiotic-resistant isolates were discovered in 
animal farms, which more commonly used antibiotics 
for prophylactic and treating purposes, but our findings 
of less resistance and no MDR were unexpected. 

It is debatable whether it is safe to use antimicrobial 
drugs in humans to prohibit HUS due to lysis of the 
bacteria and release of the Shiga toxins in the gut. 
However, reports have revealed that using some 
antimicrobials in the early phase of the disease may 
prevent HUS advancement [36]. 

In our study, most strains exhibited an intermediate 
resistance pattern, suggesting the possibility of future 
resistance. The intermediate susceptibility profiles 
should be elevated and taken into consideration with 
resistance results because it means the organism may be 
on the way to becoming resistant. In fact, antibiotics are 
not recommended for O157:H7 infections as they can 
induce the bacteria to express more Shiga toxin and 
make the disease worse with the risk of triggering 
hemolytic-uremic syndrome [40]. However, knowing 
the antibiotic resistance of O157:H7 strains can help 
track them in an outbreak and be a useful tool for 
selective isolation. 

Shiga toxins (stx genotypes) are important clinical 
outcome factors that correlate with HC and HUS, as 
well as higher pathogenicity in strains carrying the stx2 
genotype [41]. The eae gene encodes for an intimin 
protein, which is important for attaching and effacing 
activity in host intestinal cells and causes severe human 
illnesses, particularly HUS [42]. Furthermore, a 
hemolysin produced by STEC called enterohemolysin 
is encoded by the hlyA gene and causes erythrocyte 
lysis, which participates in iron intake in the intestine. 
This gene is commonly used as an epidemiological 
marker of STEC strains [43]. 

In the present study, the stx2 gene was present in 
most isolates (7/10), and eae and ehxA were found in 
more than half of the isolates. Many studies have found 
that the virulence factors stx2 and eaeA are clinically 
significant and are associated with the severity of 
human disease, particularly HUS [44,45]. In United 
Arab Emirates, Shiga toxin gene (stx2) was confirmed 
in all 24 E. coli O157 from camels, cattle, and goats. 
The eaeA and hlyA genes were present in 79.2% and 
66.7%, respectively, whereas stx1 was absent in all 
isolates [20]. 

The presence of ehxA + eae and ehxA + eae + stx2 
is significantly associated with HUS and O157:H7 
isolates [46]. In our study, two isolates (T109 and T125) 
harbored stx2, eae, and ehxA, and one isolate (BS10) 
harbored stx1, eae, and ehxA suggesting that the 
existence of more than one virulence factor, particularly 
eae, and ehxA could be associated with more severe 
clinical outcomes in O157 infections. Hua et al. [46] 
mentioned that the presence of ehxA with stx and eae, 
can be used as a risk predictor for HUS in STEC 
infections.  

An Ethiopian study revealed that the rate of stx1, 
eae, hly, and stx2 among 14 E. coli O157:H7 detected 
among 157 isolates of E. coli was 11 (78.5%), 6 
(42.8%), 3 (21.4%), and 11 (78.5%) respectively [7].  

Generally, all E coli O157:H7 possess intimin 
(eae). Some strains may lose the Shiga toxin phage and 
be negative for stx1 and sxt2, but the absence of eae in 
O157:H7 is very unusual. Furthermore, the lack of ehxA 
in O157:H7 is also unusual, although this gene is 
located on a plasmid that could be lost either naturally 
in the animal host or during lab manipulations. 
Negative results for the presence of eae and ehxA genes 
were verified by simplex PCRs with eae and ehxA 
primers instead of multiplex PCR.  

The absence of eae and ehxA among our isolates 
recognizes these isolates as atypical O157:H7 which 
represents a less serious threat to public health. For 
typical STEC, the only reservoir is humans. However, 
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atypical STEC can have both animal and human 
reservoirs and may also be associated with human 
diarrhoeal disease [47].  

In the same way, the atypical EPEC 
(enteropathogenic E. coli) strains may be less virulent 
than the typical isolates. One reason may be the lack of 
the adherence factor (EAF) plasmid among the atypical 
strains. However, atypical strains have not been 
confirmed to be less pathogenic, and these bacteria have 
other virulence factors that may compensate for the 
absence of the EAF plasmid [48].  

This study showed that 9 STEC strains harbored 
fimH and half the isolates harbored sfa/focDE, cdt3, 
traT, and iutA. These factors were identified in a 
previous study on E. coli from dairy farms in the USA 
[49]. In an Iranian study of STEC, they found papA, 
cnf1, traT, and cnf2 were the most common virulence 
genes [50]. The detected factors contribute to virulence, 
which affects host cell processes and contributes to 
bacterial pathogenesis. The findings of these virulence 
factors in our isolates in association with the high 
frequency of stx1, stx2, and ehxA suggest that STEC 
O157 in Tunisian calves may pose a serious public 
health concern. 

The findings of our study revealed that all E. coli 
O157:H7 isolates belonged to phylogroup E which 
usually corresponds to commensal strains. This was 
identical to the report of Tenaillon et al. [51]. A study 
in Brazil demonstrated that E. coli belonging to 
phylogroups E and B1 were isolated from cattle, 
whereas phylogroups A and F were from poultry, and 
B2 and D were associated with isolates from water 
buffalo [52]. 

 
Conclusions 

The frequency of E. coli O157:H7 in healthy cattle 
indicates a possible risk for a public health concern. The 
detection of STEC O157:H7 in this study among cattle 
and previously in humans in Tunisia have important 
benefits for public health and calls for the public health 
system in our country to track food-borne outbreaks. 
The existence of STEC O157:H7 in animals intended 
for slaughter highlighted the possible contamination of 
meat products prepared for human consumption. The 
high prevalence of stx1, stx2, and ehxA together with 
other virulence factors suggest that STEC O157 in 
Tunisian calves may pose a serious public health 
concern. Our study reveals the necessity of regular 
screening animals for E. coli O157:H7 in order to 
control this pathogen. Moreover, the frequency of 
O157:H7 in slaughterhouse animals indicates that the 
risk is significant for public health. Therefore, it is 

important to take the necessary precautions during the 
slaughter and skinning of animals to prevent cross 
contamination of meat by this pathogen. Clinical results 
must be obtained to evaluate the actual influence of 
food contamination on humans in Tunisia. 
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