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Abstract 
Introduction: Chongqing is among the areas with the highest rubella incidence rates in China. This study aimed to analyze the temporal 
distribution characteristics of rubella and establish a forecasting model in Chongqing, which could provide a tool for decision-making in the 
early warning system for the health sector. 
Methodology: The rubella monthly incidence data from 2004 to 2019 were obtained from the Chongqing Center of Disease and Control. The 
incidence from 2004 to June 2019 was fitted using the seasonal autoregressive integrated moving average (SARIMA) model and the back-
propagation neural network (BPNN) model, and the data from July to December 2019 was used for validation. 
Results: A total of 30,083 rubella cases were reported in this study, with a significantly higher average annual incidence before the nationwide 
introduction of rubella-containing vaccine (RCV). The peak of rubella notification was from April to June annually. Both SARIMA and BPNN 
models were capable of predicting the expected incidence of rubella. However, the linear SARIMA model fits and predicts better than the 
nonlinear BPNN model. 
Conclusions: Based on the results, rubella incidence in Chongqing has an obvious seasonal trend, and SARIMA (2,1,1) × (1,1,1) 12 model can 
predict the incidence of rubella well. The SARIMA model is a feasible tool for producing reliable rubella forecasts in Chongqing. 
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Introduction 

Rubella is an eruptive, highly contagious, and mild 
viral infection transmitted through direct or droplet 
contact from nasopharyngeal secretions [1,2]. Humans 
are the only known host [3]. It typically begins with 
low-grade fever and lymphadenopathy, followed by 
characteristic brief appearance of a generalized 
erythematous, maculopapular rash [4]. Maternal rubella 
infection, especially during the first trimester of 
gestation, can cause miscarriage, stillbirths, or 
congenital rubella syndrome (CRS), a constellation of 
congenital disabilities that often includes the classic 
triad of cataracts, sensorineural deafness, and 
congenital heart defects [1,4,5]. Rubella occurs 
worldwide [6-8], and China is among the countries that 
have experienced frequent and widespread rubella 
outbreaks [9]. 

China, the most populous country, has reported 
88% of rubella cases in the Western Pacific Region 
since 2004, when it began reporting rubella cases [10]. 
The rubella-containing vaccine (RCV) was licensed and 

made available in China in 1993 and was introduced 
nationwide by the government’s Expanded Program on 
Immunization (EPI) in 2008 [11]. The overall incidence 
of rubella in China has declined in recent years, with a 
historically low level in 2017, during which the 
incidence was 1.16 per million total population, the 
accumulation of susceptible individuals led to a 
rebound in the epidemic, and almost 30,000 cases were 
reported in 2019 [9], according to the data from the 
National Notifiable Disease Reporting System 
(NNDRS). In fact, the number of rubella cases 
worldwide had more than doubled in 2019, compared 
to the year before [12]. Rubella remains a public health 
concern worldwide [3]. Thus, understanding the 
epidemiological patterns and establishing the accurate 
morbidity prediction model of rubella are critical for 
risk analysis and resource allocation in the health 
sector. 

Many mathematical models have been developed to 
successfully forecast infectious diseases [13-16]. The 
autoregressive integrated moving average (ARIMA) 
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model, which is the most popular linear modeling 
technique for forecasting time series [17], integrates 
changing trends, periodic changes, and random 
disturbances in time series and can reveal the 
quantitative relationship between the research object 
and other objects with the development and 
transformation of time [18]. The artificial neural 
network (ANN) model, on the other hand, has usually 
been preferred for nonlinear time series [19]. The 
backpropagation neural network (BPNN) model is one 
of the most widely used ANNs; it can approximate any 
complex nonlinear mapping and is especially suitable 
for solving complicated internal mechanisms [20].  

Chongqing is one of the areas with the highest 
rubella incidence rates in China. A total of 187 rubella 
public health emergencies were reported nationwide in 
2019, including 47 in Chongqing [21]. Although there 
are some epidemiological rubella studies, no previous 
research has been conducted to predict the incidence of 
rubella in Chongqing. Consequently, we developed a 
seasonal autoregressive integrated moving average 
(SARIMA) model, an extension of the ARIMA model 
with seasonal effect, and a BPNN model to forecast the 
incidence of rubella. The results of this study may help 
predict the epidemic trends of rubella and provide 
reference information for rubella public health 
intervention in Chongqing. 

 
Methodology 
Data Collection 

In this study, the incidence data from 2004 to 2019 
were primarily gained from the Chongqing Center of 
Disease and Control (CDC), while population data were 
collected from the Chongqing Statistics Bureau. All 
rubella cases were initially diagnosed by clinical 
symptoms and confirmed by laboratory examination. 

 
SARIMA model construction 

The SARIMA model integrates the seasonal effects, 
long-term trend effects, cyclical variations, and 
disturbances of stochastic perturbations of the series. 
The general structure of the SARIMA model could be 
expressed as SARIMA (p, d, q) × (P, D, Q)s, in which 
p, d, and q are non-negative integers that indicate orders 
of non-seasonal autoregressive (AR) terms, non-
seasonal differencing and non-seasonal moving average 
(MA), respectively; P, D, and Q are also non-negative 
integers that indicate orders of seasonal AR terms, 
seasonal differencing and seasonal MA terms, 
respectively; and S suggests the length of seasonal 
period [18]. The values of the above six parameters will 
be determined based on the sequence autocorrelation 

function (ACF) and the partial autocorrelation function 
(PACF). The complete structure of the model fitted to 
the sequence of observations is as follows [18]: 
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In the above equation,  represents the backward 

shift operator, denotes the residual at time , the 

mean of  is zero and the variance is constant,  is 

the observed value at time .  
Akaike information criterion (AIC) and Schwarz 

Bayesian criterion (BIC) were employed for model 
optimization. The tested model with the lowest AIC and 
BIC values was regarded as the relatively optimal one. 

 
BPNN model construction 

The BPNN is a typical multilayer feed-forward 
neural network consisting of an input layer, at least one 
hidden layer, and an output layer [22]. The basic idea of 
the BP algorithm is that the learning process consists of 
two processes: forward propagation of the signal and 
backward propagation of the error. In the forward 
propagation process, the input samples are passed in 
from the input layer, and after nonlinear processing at 
each hidden layer, they are passed to the output layer. 
The actual output value is compared with the expected 
value, if the given output requirement is not satisfied, 
and the error is propagated back. Error back-
propagation is to back-propagate the output error in 
some form to the hidden and input layers, gradually 
reducing the error by adjusting the weight of each 
neuron in the hidden layer until the error between the 
actual and the expected output meets the accuracy 
requirement or reaches the maximum learning count 
[23]. 

A single hidden layer feed-forward network is the 
most widely used for time series modeling and 
forecasting [22]. The relationship between the output (

) and the inputs ( ) is based on the 
following mathematical representation: 
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Where  is the 
weight of the kth neuron in the input layer to the jth 

neuron in the hidden layer;  is the 
weight of the jth neuron in the hidden layer 
corresponding to the output layer neuron;

 is the threshold of the jth neuron in 

the hidden layer;  is the threshold of the output layer 
neuron; n is the number of input nodes;  is the 

number of hidden nodes. Both  and  are 
activation functions.  

 
Performance statistic index 

The mean absolute error (MAE), the root mean 
square error (RMSE) and the mean absolute scaled error 
(MASE) were used to determine the fitting and 
forecasting effect [24]. The calculation formulae are as 
follows: 

 

, 

 

Where  and  denote the actual incidence value 
and the estimated incidence value, respectively, at time 

, m is the seasonal period. Generally, lower MAE, 
RMSE and MASE values suggest better fitting and 
predicting performance, and vice versa.  

 
Statistical analysis 

At first, we used Excel 2016 software to count the 
number of reported rubella incidences/fatalities in 
Chongqing for each year from 2004 to 2019, organize 
the data into two periods: before (2004-2008) and after 
(2009-2019) the introduction of RCVs into China’s 
nationwide EPI system, and conduct a descriptive 
analysis. Next, we analyzed the time series analysis of 
the rubella incidence sequence. We used the R4.0.5 
software, to develop a SARIMA model and a BPNN 
model and predict the incidence of rubella. In this study, 
the incidence of rubella from 2004 to June 2019 was 
used as a training dataset to fit the model, predict the 
incidence of rubella from July to December in 2019, 
and verify the predicted effect. Statistical significance 
was determined as p < 0.05. 

 
Ethics approval and consent to participate 

This study protocol was approved by the Ethics 
Committee of Chongqing Medical University. Since all 
data collected in this study are was in accordance to the 
Law of the People's Republic of China on the 
Prevention and Treatment of Infectious Diseases, and 
we did not include any patients' personal information, 
written informed consent is not needed for this study. 

 
Results 
Descriptive analyses 

During this study (2004-2019), a total of 30083 
rubella cases were reported in Chongqing, with an 
average annual incidence of 6.47 per 100000, and no 
deaths. Table 1 shows the average annual incidence rate 
after EPI introduction decreased from 10.76 per 100000 
before implementation to 4.51 per 100000, with 
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Table 1. Comparison of rubella incidence before and after the introduction of RCVs into EPI. 
Time Total number of cases Average annual incidence (1/100000) Person χ2-value p value 

2004-2008 15181 10.76 6062.98 < 0.001 
2009-2019 14902 4.51 

 

Figure 1. Seasonal distribution of rubella in Chongqing. 
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statistically significant differences (χ2=6062.98, 
p<0.001).  

Figure 1 presents the temporal distribution of 
rubella incidence in Chongqing from 2004 to 2019, 
mainly showing a unimodal feature, with a peak 
incidence from April to June and a slight increase again 
in December, with obvious seasonal characteristics. 

The sequence diagram also shows that the incidence 
of rubella from 2004 to 2019 was unstable (Figure 2). 
Between 2004 and 2008, regional rubella incidence 
ranged from 2.08 per 100000 in 2005 to a peak of 21.09 
per 100,000 in 2007. Since 2013, the incidence of 
rubella has shown a downward trend, and the 2017 
incidence was at a historic low level, during which only 
52 rubella cases were reported (incidence rate of 0.17 

per 100000). However, his rate increased again in 2019, 
with an incidence rate of 17.52 per 100000. 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑝𝑝,𝑑𝑑, 𝑞𝑞) × (𝑃𝑃,𝐷𝐷,𝑄𝑄)𝑆𝑆 model 

Figure 3 shows the decomposition diagram of the 
rubella incidence sequence, which exhibits a fluctuating 
downward trend and prominent seasonal 
characteristics. Given the periodicity and seasonality of 
rubella, a first difference (d=1) and a seasonal 
difference (D=1) with a period of 12 were performed to 
eliminate non-stationarity. The sequence diagram after 
the difference appeared to be stationary (Figure 4), and 
the ADF test results remained significant (𝑝𝑝 <  0.05). 

Figure 5 shows that ACF and PACF of the 
stationary sequence were both trailing. Based on the 

Figure 2. Reported monthly incidence of rubella from January 
2004 to December 2019. 

Figure 3. Monthly data cases of rubella incidence from 2004 to 
2019 with multiplicative decomposition of rubella incidence 
time-series data. 

Figure 4. Sequence diagram after a 1-step difference and 
seasonal difference with a period of 12. 

Figure 5. Autocorrelation function (ACF) and partial ACF 
charts of monthly rubella incidence numbers. (a) ACF chart; (b) 
Partial ACF chart. 
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ACF, we determined the possible values of 𝑞𝑞 (𝑞𝑞 =
 1, 2 𝑜𝑜𝑜𝑜 3) and 𝑄𝑄 (𝑄𝑄 =  0 𝑜𝑜𝑜𝑜 1) of SARIMA (p, d, q) × 
(P, D, Q)s, and based on PACF, we determined the 
possible values of  𝑝𝑝 (𝑝𝑝 =  1, 2 𝑜𝑜𝑜𝑜 3) and 𝑃𝑃 (𝑃𝑃 =
 0 𝑜𝑜𝑜𝑜 1). All primary models were used to simulate and 
model the monthly rubella incidence. Several models 
passed the test and the model parameter test. The AIC 
and BIC values of the six candidate models are listed in 
Table 2, and we finally confirmed SARIMA (2, 1, 1) × 
(1, 1, 1)12 as the optimal model, which had resulted in 
the minimum AIC (358.85) and BIC (377.77) values. 

Table 3 shows the parameter estimate results of the 
SARIMA model, and all the parameter estimates were 

significant ( ). The Ljung-Box test also 
confirmed that the residuals of the model were a white 

noise sequence ( ). The model equation is 
given as 

 
 
BPNN model 

After normalizing rubella incidence and converting 
all values to intervals [0, 1], we used the data of the past 
12 months as the input data and the data of the thirteenth 
month as the output data. For example, the observed 
value from January to December 2004 was selected to 
predict that in January 2005, the practical value from 
February 2004 to January 2005 was chosen to indicate 

that in February 2005, and so on. Thus, the number of 
nodes in the input and output layers could be 
determined, with n = 12, m = 1. The number of neurons 
in the hidden layer could be calculated by the empirical 
formula: 𝑆𝑆 = √𝑚𝑚 + 𝑛𝑛 + 𝛼𝛼 , ranging from 5 to 14, 
where 𝛼𝛼 is the regulation constant with values between 
1 and 10 [23]. We set the target error of the training of 
BPNN as 0.001, the training steps as 2000, the transfer 
function of the hidden layer as “tansig”, the transfer 
function of the output layer as “purelin”. When the 
difference between the target estimate and the actual 
value is less than 0.001, error back-propagation is not 
necessary; otherwise, back-propagation is required to 
further adjust the weights. During the entire modeling, 
when the difference between the two residual squares is 
less than 0.001, it can be considered converged, and the 
iteration can be skipped to end the algorithm [23]. 
Predictions are made based on the fitted weight matrix 
and threshold values for the validation set. 

We constructed ten different BPNN models in 
terms of the number of neurons in the hidden layer. 
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Table 2. AIC and BIC values for candidate SARIMA models. 
Candidate Models AIC BIC 
SARIMA (1, 1, 2) × (1, 1, 1)12 364.71 383.63 
SARIMA (1, 1, 2) × (0, 1, 1)12 373.38 389.15 
SARIMA (2, 1, 0) × (1, 1, 1)12 379.05 394.81 
SARIMA (2, 1, 1) × (0, 1, 1)12 364.57 380.33 
SARIMA (2, 1, 1) × (1, 1, 1)12 358.85 377.77 
SARIMA (3, 1, 0) × (1, 1, 1)12 367.42 386.34 

 

Table 3. Estimation of parameters of the SARIMA (2,1,1) × (1,1,1)12 model. 
Variable Coefficient Standard Error t value p value 
AR (1) 0.9477 0.0868 10.9192 < 0.001 
AR (2) -0.4019 0.0788 -5.0998 < 0.001 
MA (1) -0.8877 0.0680 -13.0497 < 0.001 

Seasonal AR (1) 0.2396 0.0872 2.7472 < 0.001 
Seasonal MA (1) -1.0000 0.0755 -13.2513 < 0.001 

 
 
Table 4. Reported and forecasted incidence of rubella from July to December in 2019. 

Month Actual incidence 
(1/100000) 

Forecasted incidence by 
SARIMA model (1/100000) 

Forecasted incidence by 
BPNN model (1/100000) 

Jul 2019 1.0306 1.3600 1.1479 
Aug 2019 0.4865 0.4621 0.3611 
Sep 2019 0.1760 0.3052 0.3979 
Oct 2019 0.6914 0.4691 0.4647 
Nov 2019 0.4609 0.6905 0.5141 
Dec 2019 1.6292 1.0498 0.2668 

 
 
Table 5. Comparison of the fitting and prediction performance of the two model. 

Evaluation index Fitting performance Forecasting performance 
SARIMA BPNN SARIMA BPNN 

MAE 0.3015 0.3477 0.3065 0.3511 
RMSE 0.5850 0.6458 0.2524 0.5758 
MASE 0.6317 0.7009 0.4099 0.5703 
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Comparing the RMSE value of the testing set in each 
model, we finally chose the 12-8-1 BPNN model, which 
had the minimum RMSE value of 0.5758. 

 
Comparative analysis 

The SARIMA (2, 1, 1) × (1, 1, 1)12 model and the 
12-8-1 BPNN model were employed for forecasting the 
incidence of rubella from July to December 2019. Table 
4 shows the value of the prediction, showing that the 
predicted values obtained by the SARIMA model were 
closer to the actual values than those obtained by 
BPNN. We compared the observed rubella notification 
rate with the fitted and predicted ones in a point-to-point 
manner to further compare the validity of the two 
models (Table 5). The SARIMA model was superior to 
the BPNN model for either fitting or forecasting 
performance.  

Figure 6 shows the actual incidence and fitted 
incidence of the two models; the SARIMA model had a 
fit value closer to the actual value than the BPNN 
model. Both Figure 6 and Table 4 show that the 
tendency and epidemics from predicted incidence are 
close to the real value of incidence and epidemic 
circumstance of rubella. These two prediction methods 
can be considered to predict the incidence of rubella in 
Chongqing. In terms of the fitting effect of the model 
and the accuracy of the prediction results, the SARIMA 
model would be much more suitable. 

 
Discussion 

In this study, we found that the incidence of rubella 
in Chongqing from 2004 to 2019 was not stable, but 
based on the annual trend of the national rubella 
incidence [9,25], with a peak incidence every 5-8 years 
[26]. In 2007 and 2008, the incidence of rubella in 
Chongqing was as high as 21.09 per 100,000 and 18.76 
per 100000, respectively. A further peak of 10.81 per 
100000 in incidence occurred in 2011. While RCV was 

introduced nationwide in 2008, its full implementation 
required four years due to sporadic vaccine supply 
constraints. Nationwide implementation was achieved 
in 2012, with routine immunization coverage exceeding 
95% [25]. Since 2013, the incidence of rubella has 
exhibited a downward trend, and the 2017 incidence 
was at a historically low level. But it broke out again in 
2019, with an incidence rate of 17.52 per 100,000, 
which may be caused by the accumulation of 
susceptible populations and the spread of imported 
strains [10,27]. Despite fluctuations, the introduction of 
rubella into China's EPI system in 2008 has indeed 
contributed to the control and elimination of rubella and 
the prevention of CRS in Chongqing, with a significant 
difference in the average annual incidence rate before 
and after the nationwide introduction of RCVs. Large-
scale routine vaccination with RCVs should be 
continued to close known immunity gaps and immunize 
health workers and populations at risk for rubella 
transmission [28]. The health department should 
continuously carry out virological surveillance work, 
timely detection of epidemic viruses, and genotype 
identification to scientifically prevent and control the 
spread of imported virus strains and further reduce the 
incidence of rubella. 

We analyzed the rubella incidence rates and 
observed a fluctuating downward trend and seasonal 
characteristics in this area, with a single peak from 
April to June, and troughs from August to February, 
similar to the studies of other areas [9,25]. This may be 
related to the climate and human behaviors [29]. As 
temperatures rise, interpersonal activity and contact 
tend to increase during the spring and summer months. 
Thus, the virus is more likely to spread throughout the 
population, leading to widespread epidemics. 
Therefore, sanitary inspection should be done in the 
peak period to control the source of infection, cut off 
the transmission route, and establish a complete 
emergency plan. 

Time series analysis extracts valuable information 
from historical data, identifies recursive mechanisms, 
and expresses the current observations as a function of 
their historical observations to make predictions about 
future trends. Rubella is a globally important public 
health issue. Accurate prediction of rubella is helpful 
for policy-makers to develop effective intervention 
plans and efficient allocation of public health resources. 
We demonstrated that both SARIMA and BPNN 
models can be used to predict the monthly incidence of 
rubella. The linear SARIMA model fits and predicts 
better than the nonlinear BPNN model, indicating that 
the rubella incidence data in Chongqing has good linear 

Figure 6. Model fitting, verification and forecasting of rubella 
incidence in Chongqing from January 2004 to December 2019. 
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characteristics [19]. Since most epidemiological data 
are seasonal and cyclical [15-17,30], the SARIMA 
model considers seasonal effects and is suitable for 
analyzing sequences with significant seasonality and 
periodicity [31], which appears more appropriate for the 
prediction of rubella incidence. In addition, the 
establishment of SARIMA model is simple. To the best 
of our knowledge, this is the first study that assesses 
both linear and nonlinear models to predict rubella 
report rates in Chongqing. The results indicate that 
model SARIMA (2, 1, 1) × (1, 1, 1)12 is the relatively 
more optimal prediction model in this study; the fitted 
values were in good agreement with the observed. The 
SARIMA model in this study can reasonably contribute 
to rubella surveillance in Chongqing and has a good 
short-term predictive effect. It provides a basis for 
predicting future rubella epidemics and for health 
authorities to strengthen public health measures to 
prevent and control the disease. It is worth noting that 
SARIMA is a short-term forecasting model with poor 
long-term forecasting ability, and the model needs to be 
updated or replaced by continuously incorporating new 
monitoring data during subsequent use. Therefore, 
model updating and the selection of new models remain 
essential elements of future research work. 

Several limitations also exist in the present study. 
Firstly, both models were based on the time-series data 
for preliminary modeling prediction, without 
considering other factors affecting the rubella 
incidence, such as meteorological [32] and socio-
geographical [33]. Incorporating more potential 
influencing factors may allow for more accurate 
mathematical modeling. Secondly, neither model can 
capture both linear and nonlinear patterns of the data 
equally well. Thus, in both cases, one of these parts is 
not considered, and can lead to deceptive results. 
Therefore, various hybrid approaches have been 
suggested [19]. In future research, more models with 
good time-series prediction results can be tested. A 
deep optimization combination of different models can 
make the advantages complement each other and 
achieve further improvement in the prediction accuracy 
rate. 

 
Conclusions 

The results of this study suggest that it is feasible to 
apply both SARIMA and BPNN models to predict the 
incidence of rubella in Chongqing; however SARIMA 
(2, 1, 1) × (1, 1, 1)12 showed better performance. The 
short-term prediction is effective, and it is helpful for 
the understanding of rubella epidemiology and 
resources allocation in Chongqing. Meanwhile, timely 

and effective countermeasures can be taken for possible 
epidemic peaks. 
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