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Abstract 
Introduction: Seasonal influenza is a serious public health issue in China. This study aimed to develop a new hybrid model for seasonal influenza 
incidence prediction and provide reference information for early warning management before outbreaks. 
Methodology: Data on the monthly incidence of seasonal influenza between 2004 and 2018 were obtained from the China Public Health Science 
Data Center website. A single seasonal autoregressive integrated moving average (SARIMA) model and a single error trend and seasonality 
(ETS) model were built. On this basis, we constructed SARIMA, ETS, and support vector regression (SARIMA-ETS-SVR) hybrid model. The 
prediction performance was determined by comparing mean absolute error (MAE), mean square error (MSE), mean absolute percentage error 
(MAPE), and root mean square error (RMSE) indices. 
Results: The optimum SARIMA model was SARIMA (0,1,0) (0,0,1)12. Error trend and seasonality (ETS) (M,A,M) was the SARIMA optimal 
model. For the fitting performance, the SARIMA-ETS-SVR hybrid model achieved the lowest values of MAE, MSE, and RMSE, in addition 
to the MAPE. In terms of predictive performance, the SARIMA-ETS-SVR hybrid model had the lowest MAE, MSE, MAPE, and RMSE values 
among the three models. 
Conclusions: The study demonstrated that the SARIMA-ETS-SVR hybrid model provides better generalization ability than a single SARIMA 
model and a single ETS model, and the predictions will provide a useful tool for preventing this infectious disease. 
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Introduction 

Seasonal influenza, caused by the influenza virus, is 
an acute respiratory disease characterized by the sudden 
onset of fever, headache, cough, rhinitis, and muscle 
and joint pain [1,2]. Influenza can be classified into four 
types: influenza A virus, influenza B virus, influenza C 
virus, and influenza D virus, among which influenza 
virus types A and B circulate and cause seasonal 
influenza [3]. Seasonal influenza has also been shown 
to contribute significantly to global mortality [4]. The 
Global Burden of Disease Study (GBD) estimated that 
99,000-200,000 deaths could be attributed to seasonal 
influenza worldwide, accounting for 0.26% of all 
deaths in 2017 [5]. Additionally, the World Health 
Organization (WHO) estimates that seasonal influenza 
leads to approximately 3-5 million cases of severe 
illness and 290,000-650,000 respiratory deaths 
annually [3]. Seasonal influenza poses a significant 
global economic burden. The average annual economic 
burden of this infectious disease on the healthcare 
system and society is $11.2 billion in the United States 

[6]. In Spain, the economic burden of seasonal 
influenza on primary care, hospitals, and treatment can 
reach €1 billion annually [7]. 

In China, seasonal influenza is classified as a Class 
C infectious disease. Currently, China faces enormous 
challenges in seasonal influenza control and prevention 
because of the increased morbidity and mortality 
associated with this infectious disease [8]. Previous 
studies have reported that the incidence of seasonal 
influenza in China increased from 3.51 per 100,000 
population in 2005 to 55.09 per 100,000 population in 
2018 [8]. The estimated mortality attributable to 
influenza is an annual average of 88,100 influenza-
related deaths in China [9]. Seasonal influenza causes a 
tremendous disease burden, especially among 
influenza-associated outpatients, with an average of 2.5 
excess influenza-like-illness consultations per 1000 
person-years in 30 provinces of China each year 
between 2006 and 2015 [10]. A recent study revealed 
that there were 10,025 influenza-related deaths per 
year, accounting for 5.2% of all deaths in Chongqing 
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[11]. Therefore, it is crucial to control and prevent 
seasonal influenza outbreaks in China. 

Time-series analysis, a scientific method of 
quantitative prediction, has been applied to historical 
data and time variables to predict future developments 
in infectious diseases [12]. Considerable efforts have 
been made to develop modeling approaches to explore 
and understand the regularity of the occurrence of 
infectious diseases and anticipate outbreaks [13]. 
Currently, various statistical methods, including 
traditional mathematical forecasting models and 
machine-learning-based forecasting models, have been 
extensively employed in infectious disease forecasting. 
As for traditional mathematical forecasting models, 
they include autoregressive integrated moving average 
(ARIMA) model [14], linear regression [15], grey 
model first-order one-variable (GM (1,1) model) [16] 
and exponential smoothing models [17], while machine 
learning-based forecasting models include artificial 
neural networks (ANN) [18], support vector regression 
(SVR) [19] and eXtreme gradient boosting (XGBoost) 
models [20]. 

In recent years, the emergence of hybrid methods 
has provided novel methods for predicting infectious 
diseases. It has been proven that hybrid methods 
combine the merits of different methods and may 
improve the forecast accuracy [21]. However, to date, 
no studies have been conducted on the use of a hybrid 
method to predict seasonal influenza epidemic trends in 
mainland China. In this study, we propose a new 
seasonal autoregressive integrated moving average 
(SARIMA), error trend and seasonality (ETS), and 
support vector regression (SARIMA-ETS-SVR) hybrid 
model to fit and predict the incidence of seasonal 
influenza from 2004 to 2018 in mainland China. This 
study aimed to provide reference information for early 
warning management and to implement adequate 
preventive measures before the outbreak of seasonal 
influenza in mainland China. 

 
Methodology 
Data source 

Monthly influenza incidence data from 2004 to 
2018 were obtained from the China Public Health 
Science Data Center website 
(https://www.phsciencedata.cn/Share/index.jsp, 
Supplementary File 1). The law of the Peoples Republic 
of China on the prevention and treatment of infectious 
diseases requires the inclusion of influenza in the 
management of category C infectious diseases. If a 
seasonal influenza case is diagnosed, clinicians must 
report to the national network reporting system within 

24 hours at the local Center for Disease Control and 
Prevention. In this study, the number of monthly 
observations of influenza incidence was 180 and data 
from 2004 to 2018 were used from the database. Data 
from January 2004 to December 2017 were used to 
construct the models, and data from January to 
December 2018 were used to evaluate the predictive 
performance of each model. 

 
SARIMA model 

The ARIMA model is a classical time-series model 
for infectious disease forecasting [22]. Provided that the 
seasonality characteristics of the time series are 
constituted, the model can be recognized as a SARIMA 
model [23]. In general, the SARIMA model is 
expressed as SARIMA (p, d, q) (P, D, Q), and its 
mathematical formula is as follows: 

 (1) 

 (2) 
 
where B and εt denote the backshift operator and 

residuals of the seasonal influenza time series, 
respectively, p is the order of auto-regression, d is the 
degree of trend difference, q is the order of moving 
average, P is the seasonal auto regression lag, D is the 
degree of seasonal difference, Q is the seasonal moving 
average, and s is the periodicity of the seasonal 
influenza time series (s = 12) [23]. 

Several steps are involved in establishing the 
SARIMA model [23,24]. First, plots of the original 
seasonal influenza time series or Augmented Dickey-
Fuller (ADF) tests were performed to check whether the 
time series was stationary. If the original seasonal 
influenza time series is not stationary, differences are 
used to transform it into a stationary series. Second, the 
auto-correlation function (ACF) and partial auto-
correlation function (PACF) graphics are plotted to 
verify the identification and estimation of the SARIMA 
model. Simultaneously, parameters p, q, P, and Q of the 
SARIMA model can be identified. Third, a Ljung-Box 
Q test was conducted to perform a white noise test on 
the seasonal influenza time-series residuals. The 
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independent and normal distributions of seasonal 
influenza time-series residuals were checked by 
conducting a normal distribution standardized residual 
plot or histogram plot. Finally, the lowest values of the 
Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) were considered for optimal 
SARIMA models. 

 
ETS model 

The ETS model (E, T, S) designates three 
components, error, trend, and seasonality, which can be 
combined into different additive or multiplicative 
combinations to produce the original series [25]. 
Generally, the ETS model includes three main 
categories: additive, multiplicative, and mixed models. 
For detailed analysis, the ETS model was classified into 
30 methods [25], as shown in Table 1. 

Additive models are expressed as: 
Y = S + E     (3) 
Y = T + S + E    (4) 
Multiplicative models are expressed as: 
Y = S × E     (5) 

Y = T × S × E    (6) 
Mixture models are expressed as: 
Y = (T × S) + E    (7) 

Y = (T + S) × (1 + E)   (8) 
The ETS model was built in the R software 

environment. The optimal ETS prediction model 
requires Akaike information criterion (AIC), corrected 
Akaike information criterion (AICc), or Bayesian 
information criterion (BIC) minima. The Ljung-Box Q-
test residuals were also required to be white-noise 
sequences [26]. 

 
SVR model 

Support vector regression (SVR) is a machine 
learning algorithm based on statistical theory and has 

been applied to regression estimation problems [27]. 
The basic idea of the SVR model is to train and learn all 
samples of the research data and distribute them 
between two straight lines, which requires the total 
deviation from all points to be the smallest [28]. After 
the maximum distance between the two lines is 
obtained, the optimal superposition of the support 
vector regression is explored. The mathematical 
formula is as follows [29]: 

    (9) 
Where f(x) represents the prediction values, φ(x) 

represents the nonlinear mapping, and w and b 
represent the modifiable coefficients. R(C) is the 
penalty function, ε is the insensitive loss factor, and 
and are the relaxation variables. 

   (10) 

    (11) 

    (12) 

    (13) 
By using Lagrange multiplier, the dual optimization 

problem can be expressed: 

 
(14) 

Here, the , , ,and  are Lagrange 
multipliers and K(xi, xj) is a kernel function. Finally, the 
SVR model formula is written as: 

   (15) 
SARIMA-ETS-SVR hybrid model 

In this section, first, the SARIMA and ETS models 
were constructed respectively, and the predictive values 
from the SARIMA model(yi) and ETS model(yj) were 
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Table 1. Trend, seasonality and residuals for different combinations of ETS models. 

Additive patterns Seasonal Component 
N (none) A (additive) M (multiplicative) 

N (None) N, A, N N, A, A N, A, M 
A (Additive) A, A, N A, A, A A, A, M 
AD (Additive damped) AD, A, N AD, A, A AD, A, M 
M (multiplicative) M, A, N M, A, A M, A, M 
MD (multiplicative damped) MD, A, N MD, A, A MD, A, M 
Multiplicative patterns    
N (None) N, M, N N, M, A N, M, M 
A (Additive) A, M, N A, M, N A, M, M 
AD (Additive damped) AD, M, N AD, M, A AD, N, M 
M (multiplicative) M, M, N M, M, A M, M, M 
MD (multiplicative damped) MD, M, N MD, M, A MD, M, M 
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obtained. Subsequently, the predictive values yi and yj 
were used as input variables, the observed values were 
used as output values to fit and construct the SVR 
model, and the SARIMA-ETS-SVR hybrid model and 
its predictive values were obtained. 

 
Evaluation of prediction performance 

In this study, mean absolute error (MAE), mean 
square error (MSE), mean absolute percentage error 
(MAPE), and root mean square error (RMSE) values 
were calculated to assess the accuracy of the capability 
and prediction of each model. The formula can be 
expressed as [21]: 

    (16) 

    (17) 

    (18) 

    (19) 

where,  is the predicted value,  is the 
observed value, and n is the sequence sample size. 

 
Data analysis 

The R software version 4.1.1 was applied to 
construct the SARIMA, ETS, and SVR models, among 
which the “forecast,” “zoo” and “tseries” packages 
were used in the construction of the SARIMA and ETS 
models, and the “e1071,” “caret” and “tidyverse” 

packages were used to construct the SVR model. The 
level of significance was set at p < 0.05. 

 
Results 
SARIMA model 

The original seasonal influenza time series from 
2004 to 2018 in mainland China is shown in Figure 1. 
The monthly seasonal influenza time series showed a 
long-term fluctuating trend, indicating that it was not a 
stationary time series. As shown in Figure 2, the 
monthly seasonal influenza time series showed 
apparent seasonality, trends, periodicity, and 
randomness between 2004 and 2018 in mainland China. 
Therefore, a trend difference was carried out to 
eliminate the data instabilities. After a trend difference 
of the original seasonal monthly influenza time series 
(Figure 3A), the differenced time series became 
stationary (ADF test, t=-5.368, p < 0.05), and the 
parameters of d and D of the SARIMA model were 1 
and 0, respectively. 

For the SARIMA seasonal part, the ACF plot with 
the differenced time series showed a significant spike at 
lags 12 or 21 (Figure 3B), and the PACF plot with the 
differenced time series showed a significant spike at lag 
12 (Figure 3C).  
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Figure 1. The original seasonal influenza time series between 
2004 and 2018 in mainland China. 

Figure 2. Decomposition of the original seasonal influenza time 
series between 2004 and 2018 in mainland China. A: Observed 
value plot; B: Trend plot; C: Seasonal plot; D: Random plot. 
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  Figure 3. Time series plot of after a trend difference and the 
ACF and PACF plots of after a trend difference of the original 
seasonal monthly influenza. A: After a trend difference plot; B: 
ACF plot; C: PACF plot. 

Figure 4. SARIMA (0,1,0) (0,0,1)12 model’s residual. A: 
Standardized residuals plot; B: ACF of residuals plot; C: p 
values for Ljung-Box statistic. 

Table 2. The candidate SARIMA models and Ljung-Box Q test. 
Candidate models AIC BIC LL L-BQS p 
SARIMA (0,1,0) (0,0,1)12 414.21 420.446 -205.11 0.1674 0.6824 
SARIMA (1,1,0) (1,0,0)12 414.32 423.676 -204.16 0.0052 0.9424 
SARIMA (1,1,0) (0,0,1)12 415.90 425.251 -204.95 0.0047 0.9450 
SARIMA (1,1,1) (0,0,1)12 415.03 427.499 -203.51 0.0227 0.8801 
SARIMA (0,1,0) (0,0,2)12 415.08 424.439 -204.54 0.1827 0.6690 
SARIMA (0,1,1) (0,0,2)12 416.60 429.069 -204.30 0.0059 0.9386 
SARIMA: seasonal autoregressive integrated moving average; AIC: Akaike information criterion; BIC: Bayesian Schwarz information criterion; LL: log 
likelihood; L-BQS: Ljung-Box Q statistics; p: p-values. 
 
 
 
Table 3. The predictive values of three models 2018 in mainland China. 

Date Observed 
value 

SARIMA ETS SARIMA-ETS-SVR 
Forecasted 

value Absolute error Forecasted 
value Absolute error Forecasted 

value Absolute error 

January 19.4372 9.5542 9.8830 8.6710 10.7662 3.6476 15.7896 
February 9.533 9.3930 0.1400 7.9802 1.5528 3.4313 6.1017 
March 4.8001 9.2950 4.4949 11.7584 6.9583 4.6550 0.1451 
April 1.9192 9.3368 7.4176 8.6507 6.7315 3.7544 1.8352 
May 1.5839 9.4035 7.8196 4.9052 3.3213 1.6817 0.0978 
June 1.1623 9.5598 8.3975 4.2836 3.1213 1.1679 0.0056 
July 1.0131 10.2551 9.2420 4.4883 3.4752 0.8671 0.1460 
August 0.8517 9.8746 9.0229 4.3950 3.5433 1.0488 0.1971 
September 0.955 9.5512 8.5962 5.6280 4.6730 2.0563 1.1013 
October 1.1024 9.3698 8.2674 4.8000 3.6976 1.6322 0.5298 
November 2.0909 9.6279 7.5370 5.9985 3.9076 2.2367 0.1458 
December 10.6363 11.5859 0.9496 10.4981 0.1382 3.1426 7.4937 
SARIMA: seasonal autoregressive integrated moving average; ETS: error trend and seasonality; SVR: Support vector regression. 
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Therefore, parameter P was 0 or 1, and Q was 0, 1, 
or 2. For the SARIMA non-seasonal part of the first 
cycle, both the ACF and PACF plots with the 
differenced time series showed a significant spike at 
lags 9 or 12. Therefore, the parameters p and q are either 
0 or 1. The candidate SARIMA models are listed in 
Table 2. These candidate SARIMA models residual all 
passed the Ljung-Box Q test, indicating that the residual 
series were white noise time series. 

The optimum SARIMA model was SARIMA 
(0,1,0) (0,0,1) 12; its estimates of seasonal moving 
average at lag one (SMA1) were 0.2729, standard error 
(SE) was 0.0967, and it had the lowest values of AIC 
and BIC. As illustrated in Figure 4, the residual from 
SARIMA (0,1,0) (0,0,1) 12 passed the Ljung-Box Q-
test (χ2= 0.1674, test statistic p > 0.05). Finally, the 
SARIMA (0,1,0) (0,0,1) 12 model was used to predict 
seasonal influenza time series from January to 
December 2018 in mainland China (Table 3). 

 
ETS model 

The ets ( ) function in the R software forecast 
package was used to fit the ETS model. ETS (M, A, M) 
was the optimal model, with the lowest values of AIC 
(439.436), AICc (443.516), and BIC (492.543). The 
smoothing parameters alpha, beta, and gamma of the 
ETS (M,A,M) model are 0.999, 0.003, and 0.0004, 
respectively. Residual series from ETS (M, A, M) 
between 2004 and 2018 was shown in Figures 5A. As 
illustrated in Figures 5B and C, the residual series from 
ETS (M, A, M) of the ACF and PACF were all within 
their two standard error bounds, and the residual from 

ETS (M, A, M) passed the white noise test (Ljung-Box 
Q Statistics χ2= 1.5121, p > 0.05). Based on the above 
residual test results, we believe that the residual series 
from ETS (M, A, M) is a white noise time series. 
Finally, the ETS (M, A, M) model was used to predict 
the seasonal influenza time series from January to 
December 2018 in mainland China (Table 3). 

 
SARIMA-ETS-SVR hybrid model 

Owing to the trend difference in the original 
seasonal influenza time series, the 13-month values 
were lost in the SARIMA modeling process. Therefore, 
155 observed values were considered as the database to 
construct the SARIMA-ETS-SVR hybrid model. 
Initially, SARIMA and ETS models were constructed, 
respectively. The predictive values from the SARIMA 
and ETS models were used as the input data, and the 
observed values were used as the output values to 
construct the SVR model. For the SVR modeling 
process, the grid search optimization method was used 
to determine the parameters C, γ, and ε. Subsequently, 
the optimal residual SVR model was selected using the 
function tune.svm ( ) of R software, and parameters C, 
γ, and ε were set to 100, 0.01, and 0.1, respectively. 
Finally, the SARIMA-ETS-SVR hybrid model and its 
predictive values were obtained. The SARIMA-ETS-
SVR hybrid model was adopted to predict seasonal 
influenza time series from January to December 2018 
in mainland China (Table 3). 

 
Comparison of three models 

In this section, a performance assessment of the 
forecasts is conducted by comparing the MAE, MSE, 
MAPE, and RMSE indices. The incidence of influenza 
in January 2018 was excluded from the performance 
assessment of the forecasts because it was an outlier 
(19.4372 per 100,000 population). For the fitting 
performance part, the values of MAE, MSE, and RMSE 
of the SARIMA model were larger than those of the 
ETS and SARIMA-ETS-SVR hybrid models, and the 
ETS and SARIMA-ETS-SVR hybrid model indices did 
not differ significantly (Table 4). However, for the 
forecasting performance, the SARIMA-ETS-SVR 
hybrid model’s values of MAE, MSE, MAPE, and 
RMSE were the lowest among the three models (Table 
4). As shown in Figure 6, the predicted values fitted by 
the SARIMA-ETS-SVR model can simulate the trend 
of the observed values better than those of a single 
SARIMA model and a single ETS model. 

 
  

Figure 5. Time series plot of residual from ETS (M, A, M). A: 
Residual series from ETS (M, A, M) between 2004 and 2018; B: 
Residual series from ETS (M, A, M) of ACF plot; C: Residual 
series from ETS (M, A, M) of PACF plot. 
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Discussion 
To the best of our knowledge, this is the first study 

to develop a SARIMA-ETS-SVR hybrid model in 
detail to forecast the incidence of seasonal influenza 
from 2004 to 2018 in mainland China. In this study, 
firstly, a single SARIMA model and a single ETS 
model were built respectively; On this basis, the 
predictive values from SARIMA and ETS models were 
obtained, which were used as input variables to fit and 
construct the SARIMA-ETS-SVR hybrid model. 
Subsequently, the three models were used to predict the 
seasonal influenza incidence, and their prediction 
performance was determined by comparing the MAE, 
MSE, MAPE, and RMSE indices. 

Undoubtedly, scientific and reliable forecasting of 
infectious disease incidence is essential for timely 
implementation of precautionary measures [30]. As 
each predictive method has advantages and 
disadvantages, choosing an appropriate forecasting 
method based on data characteristics and sample size 
played a very important role in the prediction of 
infectious diseases [31]. The SARIMA model, a 
classical time-series model, is widely used to predict 
infectious diseases [12]. It contains a seasonality 
component and is applied in the field of infectious 
disease prediction, because it considers factors such as 
periodicity, seasonality, and randomness in the 
construction of the model [32]. The SARIMA model 
has the potential to eliminate time-series instability and 
is regarded as a practical forecasting tool for early 
warning and effective preventive measures against 
infectious diseases [33]. The ETS model can not only 
capture the dynamic relationship between internal 
regulations and external results, but can also describe 
the internal regulations of the time series with the 
current and historical minimum information [25]. 
Compared to the ARIMA model, the ETS model has a 
higher capacity to capture the dynamic dependence 
structures of the time series [25]. The SVR model, 
proposed by Vapnik, is a machine learning algorithm 
based on statistical theory and has been adopted in 
numerous fields in practice [34]. It specializes in 
processing nonlinear problems [28]. A high-

dimensional space using structural risk minimization 
and a small or large sample size to build the model are 
advantages of this model [27]. 

Given this background, this study focused on the 
construction of the SARIMA-ETS-SVR hybrid model 
and applied it to predict influenza incidence from 2004 
to 2018 in mainland China. The reasons include the 
following: first, the SARIMA and ETS models require 
a sample size of at least 30 [35], whereas the SVR 
model requires a small or large sample size [27]. From 
the point of view of analyzing the sample size and data 
characteristics, 180 months data of influenza incidence 
were collected, which meets the data needs of the 
SARIMA, ETS, and SVR models. Second, from a 
prediction approach choice analysis perspective, the 
prediction approach we selected was reasonable and 
scientific. In the SARIMA-ETS-SVR hybrid modeling 
process, the SARIMA and ETS models were used to 
predict the influenza incidence, and their predictive 
values were considered as input variables to construct 
the SVR model, which could fully utilize the 
advantages of the three models. The SARIMA and ETS 
models were specialized in extracting the linear 
information of the influenza time series, whereas the 
SVR model had excellent performance in addressing 
the nonlinear information of the influenza time series. 
Moreover, the influenza incidence prediction issue was 

Table 4. Performances assessment of three models. 

Evaluating 
indicator 

Fitting performance Forecasting performance 

SARIMA ETS SARIMA-ETS-
SVR SARIMA ETS SARIMA-ETS-

SVR 
MAE 0.6558 0.3461 0.3219 6.5350 3.7382 1.6181 
MSE 7.4480 4.6684 4.6519 11.9759 6.9344 4.9588 
MAPE 0.8868 0.3437 0.3641 5.1717 2.5111 0.4070 
RMSE 10.5331 6.6021 6.5788 16.9365 9.8068 7.0128 
SARIMA: seasonal autoregressive integrated moving average; ETS: error trend and seasonality; SVR: support vector regression; MAE: mean absolute error; 
MSE: mean squared error; MAPE: mean absolute percentage error; RMSE: root mean square error. 

Figure 6. Comparison of forecasts performance of the three 
models. 
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converted into a high-dimensional feature space 
through a nonlinear transformation to create an SVR 
model with a good generalization ability [29]. 
Generally, the incidence of infectious diseases has both 
linear and nonlinear characteristics in real-world studies 
[36]. Therefore, in our study, the SARIMA-ETS-SVR 
hybrid model can better extract linear and nonlinear 
information on influenza incidence. Third, the 
predictive performance was verified by comparison 
with MAE, MSE, MAPE, and RMSE evaluation 
indices. In the fitting performance part, the predictive 
performance of the SARIMA-ETS-SVR hybrid model 
was slightly better than that of a single SARIMA model 
and a single ETS model, while in the forecasting 
performance part, the predictive performance of the 
SARIMA-ETS-SVR hybrid model was significantly 
better than that of a single SARIMA model and a single 
ETS model. It was suggested that the SARIMA-ETS-
SVR hybrid model provided more generalization ability 
than a single SARIMA model and a single ETS model. 

For these reasons, we proposed a new hybrid 
SARIMA-ETS-SVR model for the prediction of 
influenza incidence between 2004 and 2018 in 
mainland China. Despite the fact that the SARIMA-
SVR hybrid model achieves better performance, there 
are certain limitations to this study. First, seasonal 
influenza outbreaks are subject to many factors, such as 
meteorological factors [37], the level of healthcare, and 
residents' awareness and behavioral level of influenza 
[38]. However, as these factors have been excluded 
from the modeling process of the SARIMA-ETS-SVR 
hybrid model, the forecast results cannot fully interpret 
the practical situation of seasonal influenza. Second, 
each of the predictive methods has advantages and 
disadvantages [36], the SARIMA-ETS-SVR hybrid 
model is no exception. If we do not update the data in 
time, the predictive results of the SARIMA-ETS-SVR 
hybrid will not be accurately simulated. Therefore, 
future work should continuously update influenza data 
in the modeling process of the SARIMA-ETS-SVR 
hybrid model and obtain more accurate predictive 
results. 

 
Conclusions 

In this study, we collected monthly data on 
influenza incidence from 2004 to 2018 from the website 
of the data-center of China Public Health Science and 
proposed the SARIMA-ETS-SVR hybrid model to 
predict seasonal influenza incidence. The results 
suggest that the SARIMA-ETS-SVR hybrid model is 
highly capable of simulating real-world situations of the 
changes and trends in influenza incidence, which will 

provide a useful information for preventing this 
infectious disease. As a result, the government and 
relevant ministries need to strengthen influenza 
surveillance and prediction, and formulate 
corresponding preventive measures to reduce the spread 
of influenza. However, there are still some weaknesses 
in this study that affect the accuracy of the influenza 
prediction results. Since data on influenza may be 
under-reported or misreported, the accuracy of the 
prediction results is to some extent affected. Besides, 
the SARIMA-ETS-SVR hybrid model suffers from the 
lack of a large sample to validate its predictive 
performance. Therefore, in future work, we intend to 
collect sufficiently detailed data jointly with the Center 
for Disease Control and Prevention and use the 
SARIMA-ETS-SVR hybrid model for validation on a 
large sample to continuously improve and optimize the 
model to provide an effective tool for influenza 
surveillance and early warning. 
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Annex – Supplementary Items 
 
Supplementary Table 1. Monthly influenza incidence data from 2004 to 2018. 

Date Seasonal Influenza incidence 1/100,000 
2004/01 0.1906 
2004/02 0.4797 
2004/03 0.8994 
2004/04 0.7932 
2004/05 0.2356 
2004/06 0.1751 
2004/07 0.1274 
2004/08 0.1502 
2004/09 0.3227 
2004/10 0.1486 
2004/11 0.1488 
2004/12 0.1365 
2005/01 0.1651 
2005/02 0.0907 
2005/03 0.3580 
2005/04 0.6711 
2005/05 0.3047 
2005/06 0.2472 
2005/07 0.0968 
2005/08 0.1011 
2005/09 0.1913 
2005/10 0.3465 
2005/11 0.5676 
2005/12 0.3736 
2006/01 0.2566 
2006/02 0.3653 
2006/03 1.2105 
2006/04 0.9385 
2006/05 0.3968 
2006/06 0.3019 
2006/07 0.2326 
2006/08 0.1385 
2006/09 0.1061 
2006/10 0.1128 
2006/11 0.1263 
2006/12 0.2160 
2007/01 0.4823 
2007/02 0.1514 
2007/03 0.2724 
2007/04 0.2778 
2007/05 0.1985 
2007/06 0.2741 
2007/07 0.1398 
2007/08 0.1128 
2007/09 0.1580 
2007/10 0.1631 
2007/11 0.2119 
2007/12 0.3296 
2008/01 0.3304 
2008/02 0.1994 
2008/03 0.5944 
2008/04 0.2893 
2008/05 0.2259 
2008/06 0.1530 
2008/07 0.1765 
2008/08 0.1991 
2008/09 0.2308 
2008/10 0.2065 
2008/11 0.2449 
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Date Seasonal Influenza incidence 1/100,000 
2008/12 0.3051 
2009/01 0.2655 
2009/02 0.3392 
2009/03 0.6474 
2009/04 0.5131 
2009/05 0.5618 
2009/06 0.6657 
2009/07 0.5559 
2009/08 1.2184 
2009/09 3.1481 
2009/10 1.9185 
2009/11 3.2861 
2009/12 1.8184 
2010/01 0.7867 
2010/02 0.4750 
2010/03 0.6356 
2010/04 0.4417 
2010/05 0.2770 
2010/06 0.1961 
2010/07 0.1981 
2010/08 0.2938 
2010/09 0.3652 
2010/10 0.3076 
2010/11 0.3946 
2010/12 0.4610 
2011/01 0.4366 
2011/02 0.4468 
2011/03 0.5291 
2011/04 0.4033 
2011/05 0.3070 
2011/06 0.2201 
2011/07 0.1931 
2011/08 0.2364 
2011/09 0.3134 
2011/10 0.4137 
2011/11 0.5401 
2011/12 0.8923 
2012/01 0.8042 
2012/02 1.4195 
2012/03 1.4760 
2012/04 0.6966 
2012/05 0.6169 
2012/06 0.4574 
2012/07 0.5273 
2012/08 0.4768 
2012/09 0.4681 
2012/10 0.5371 
2012/11 0.6614 
2012/12 0.9240 
2013/01 1.1644 
2013/02 0.6952 
2013/03 0.7987 
2013/04 0.7936 
2013/05 0.6314 
2013/06 0.4591 
2013/07 0.3892 
2013/08 0.4546 
2013/09 0.6489 
2013/10 0.7142 
2013/11 0.9512 
2013/12 1.8910 
2014/01 2.7549 
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Date Seasonal Influenza incidence 1/100,000 
2014/02 1.8674 
2014/03 1.9214 
2014/04 0.9155 
2014/05 0.9706 
2014/06 1.4475 
2014/07 1.0105 
2014/08 0.8060 
2014/09 0.6648 
2014/10 0.6399 
2014/11 0.9684 
2014/12 1.9377 
2015/01 1.6940 
2015/02 1.0248 
2015/03 1.4425 
2015/04 1.0239 
2015/05 1.0722 
2015/06 2.5383 
2015/07 1.4422 
2015/08 0.8646 
2015/09 0.6612 
2015/10 0.6915 
2015/11 0.8058 
2015/12 1.1044 
2016/01 1.9691 
2016/02 2.4015 
2016/03 5.7429 
2016/04 3.0531 
2016/05 1.1633 
2016/06 0.6811 
2016/07 0.5242 
2016/08 0.5758 
2016/09 0.8250 
2016/10 1.0398 
2016/11 1.6015 
2016/12 2.7954 
2017/01 2.1184 
2017/02 1.6812 
2017/03 2.2032 
2017/04 1.6320 
2017/05 1.3589 
2017/06 1.7014 
2017/07 4.2799 
2017/08 2.9382 
2017/09 1.8321 
2017/10 1.2227 
2017/11 2.3188 
2017/12 9.8126 
2018/01 19.4372 
2018/02 9.5330 
2018/03 4.8001 
2018/04 1.9192 
2018/05 1.5839 
2018/06 1.1623 
2018/07 1.0131 
2018/08 0.8517 
2018/09 0.9550 
2018/10 1.1024 
2018/11 2.0909 
2018/12 10.6363 

The data used or analyzed during the current study are available from the China Public Health Science Data Center website 
(https://www.phsciencedata.cn/Share/index.jsp). Anyone meeting the requirements can gain access to them. The data were relatively uninvolved in detailed 
patient personal information. The authors confirm they did not have any special access privileges that other would not have. 
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