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Abstract 
Introduction: The spread of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a substantial severe global public health burden. Non-
carbapenemase-producing CRKP (non-CP-CRKP) is increasingly recognized as the source of severe infections.  
Methodology: We analyzed the genotypic, and phenotypic profiles of non-CP-CRKP strains with the whole-genome sequences isolated 
between 2017 and 2019 and the clinical characterization of non-CP-CRKP infection.  
Results: A total of 91 CRKP strains were collected, of which 5 (5.49%) strains were non-CP-CRKP. Four strains were from male patients; 
three strains were isolated from the bile of patients who underwent biliary interventional surgery and four had a history of antibiotic exposure. 
Three strains were sequence type (ST)11, one was ST1, and one was ST5523. The non-CP-CRKP strains were insusceptible to ertapenem. 
Three strains were susceptible to amikacin. All the strains were susceptible to imipenem, meropenem, tigecycline, ceftazidime/avibatam and 
polymyxin B. The β-lactamases of non-CP-CRKP predominantly included blaCTX-M, blaSHV, and blaTEM subtypes. Two site mutations in 
ompK36 (p.A217S and p.N218H) and four in ompK37 (p.I70M, p.I128M, p.N230G, and m233_None234insQ) were detected accounting for 
carbapenem resistance. Plasmids IncFI and IncFII were found in most strains. Genes encoding aerobactin, yersiniabactin and allantoin 
utilization were not detected in several isolates, and all non-CP-CRKP strains did not carry rmpA gene.  
Conclusions: Non-CP-CRKP infected patients had a history of previous antibiotic exposure or invasive procedures. Non-CP-CRKP strains 
were insusceptible to ertapenem. The mechanism of resistance includes β-lactamases production and the site mutations in ompK36 and ompK37. 
Several virulence genes were not detected in non-CP-CRKP. 
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Introduction 

Carbapenem-resistant Enterobacteriaceae (CRE) 
infections are a serious healthcare issue and have been 
on the global priority list of the World Health 
Organization (WHO) for research and development of 
effective drugs [1]. CRE infection is highly endemic in 
China, with an annual incidence rate of 4.0 per 10,000 
patients in 2015 calculated through a multicenter study 
that covered 25 tertiary hospitals in 14 provinces [2]. 
Carbapenem-resistant Klebsiella pneumoniae (CRKP) 
causes more than 70% of these CRE infections [2]. 
According to the 2020 national surveillance in China, 
the resistance rate of Klebsiella pneumoniae to 
imipenem and meropenem was 21.5% and 22.4% [3]. 
The production of carbapenemase enzymes, including 
Klebsiella pneumoniae carbapenemase (KPC), metallo-
β-lactamases (MBLs), Guiana extended-spectrum 
(GES) β-lactamase and OXA-like enzymes, is the 
primary mechanism underlying carbapenem resistance 
[4]. Other mechanisms of carbapenem resistance 

include overexpression of efflux pumps, mutation or 
downregulation of porins, and target modification and 
overproduction of extended-spectrum β-lactamases 
(ESBLs) and AmpC β-lactamases (AmpC) [4]. 

Non-carbapenemase-producing 
Enterobacteriaceae (NCPE) are the predominant CRE 
strains in some area [5]. In the CRACKLE-2 study, 
NCPE accounted for 19% of CRE infections and 30-day 
outcomes were similar between patients with CRE and 
NCPE infections [6]. Ertapenem is the most likely 
carbapenem antibiotic to be ineffective because of 
carbapenem non-susceptibility mechanisms. 
Ertapenem-resistant NCPE, which are susceptible to 
imipenem and meropenem, have a wider susceptibility 
profile than other CRE [7]. Higher mortality rates are 
associated with ertapenem-resistant 
Enterobacteriaceae infection than with ertapenem-
sensitive Enterobacteriaceae infection [8]. 

Hypervirulent strains of K. pneumoniae (hvKp) 
have been prevalent for the past 30 years and some 
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hypervirulence associated genes have been identified 
including rmpA, rmpA2, iroBCDN, iutA, iucABCD and 
ybt [9,10]. ST11 hypervirulent carbapenem-resistant K. 
pneumoniae (hv-CRKP) strains were reported in China 
which may cause severe infections in healthy 
individuals and were highly resistant to antibiotics [11]. 
Subsequently, an increasing number of ST11 hv-CRKP 
strains have been discovered in different Chinese 
provinces [12]. The hv-CRKP evolved when drug-
resistant strains acquired virulence genes or high-
virulence strains acquired drug-resistant genes [13]. 
The analysis of the genomic sequence of K. 
pneumoniae, especially drug resistance and virulence 
related genes, have progressed due to the development 
of sequencing technology [14]. However, to our 
knowledge, there is lack of analysis of non-CP-CRKP 
genome structure, especially the virulence gene. 

The aim of the present study was to obtain the 
comprehensive characteristic of non-CP-CRKP, by 
both collecting clinical data of patients and performing 
genome sequencing of non-CP-CRKP strains isolated 
from a tertiary care hospital in China from 2017 to 2019 
to investigate their clinical history, antibiotics 
resistance profile, and molecular characteristics of 
resistant genes and virulence genes. 

 
Methodology 
Data collection 

A retrospective epidemiologic surveillance study of 
carbapenem non-susceptible K. pneumoniae infection 
was conducted in our hospital from July 2017 to 
December 2019. A total of 91 CRKP were collected, 
and among them the 5 cases (5.49%) that were without 
carbapenemase production were included in this study. 
The clinical and epidemiologic data were collected by 
reviewing the medical records of 5 patients, including 
patient demographics, underlying medical conditions, 
location in the hospital, healthcare and antimicrobial 
therapy exposures during the prior year, clinical 
manifestations, specimen source, sample date, 
indwelling devices, treatment, and outcomes. The study 
was approved by the Institutional Review Board (No. 
002). 

 
Bacterial isolates and microbiological methods 

Isolates identification and antibiotic susceptibility 
testing were carried out using an automated VITEK-2 
compact system (Merieux, Lyon, France). The broth 
microdilution method was used to further confirm the 
susceptibility of CRKP strains to cefuroxime, 
piperacillin/tazobactam, ceftazidime/avibatam, 
aztreonam, amikacin, levofloxacin, meropenem, 

polymyxin B, and tigecycline. The susceptibility to 
ertapenem and imipenem were determined by the 
epsilometer test (E-test). The susceptibility 
interpretations are based on Clinical and Laboratory 
Standards Institute (CLSI) clinical breakpoints [15]. 
Carbapenem non-susceptible K. pneumoniae was 
defined according to the recommendation of CLSI as K. 
pneumoniae strains are non-susceptible to at least one 
carbapenem agent (ertapenem, imipenem, or 
meropenem) [16]. We defined carbapenem 
insusceptibility as minimum inhibitory concentration 
(MIC) > 1 µg/mL for meropenem or imipenem or MIC 
> 0.5 µg/mL for ertapenem. The E. coli American Type 
Culture Collection (ATCC) 25922 (negative control) 
and K. pneumoniae ATCC 700603 [positive extended 
spectrum ß-lactamase (ESBL) control] were used as 
quality control strains. Data were only included when 
the quality control test results were in acceptable 
ranges. 

 
DNA preparation, genome sequencing, and annotation 

The genomic DNA of the strain of carbapenem non-
susceptible K. pneumoniae without carbapenemase 
production was extracted using the bacterial genomic 
DNA extraction kit (Tiangen Biotech, Beijing, China). 
The sequencing of the strain was performed by 
Hisep2000 (llumina, San Diego, USA) and assembled 
with Unicycler v 0.5.0 [17]. Gene prediction for strains 
were conducted using the RAST server [18]. Multilocus 
sequence typing (MLST) was typed by MLST 2.0 
provided with the Center for Genomic Epidemiology 
(CGE) [19]. The acquired antimicrobial resistance 
genes and chromosomal mutations mediating 
antimicrobial resistance were investigated by using 
ResFinder 4.1 from the website of the CGE (updated 
version: ResFinder software: 2020-10-21; ResFinder 
database: 2020-12-01; PointFinder software: 2020-10-
21; PointFinder database: 2019-07-02) [20]. The 
plasmids were identified by PlasmidFinder 2.1 from 
CGE [updated version: Software version: 2.0.1 (2020-
07-01); Database version: 2020-07-13] [21]. Putative 
virulence factors were predicted by the Virulence 
Factors Database (VFDB) [22]. The whole-genome 
single nucleotide polymorphism (SNP) tree was 
constructed using CSI Phylogeny [23] and labeled 
using iTOL software [24]. 

 
Genomes from sequence database 

Genomic sequences available for K. pneumoniae 
were downloaded from the National Center for 
Biotechnology Information (NCBI) genome sequence 
repository [25]. The downloaded sequences comprised 
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11 whole-genome shotgun sequences available as 
scaffolds or contigs isolating from Zhejiang and 
Shanghai [NZ_JGYH01000001.1 (5422), 
NZ_LYNH01000039.1 (SKLX2467), 
NZ_LYWT01000001.1 (SKLX2848), 
NZ_NLFG01000001.1 (L86), NZ_NLFH01000001.1 
(L9), NZ_PCFT01000063.1 (XPY193), NC_016845.1 
(HS11286), NC_012731.1 (NTUH-K2044), 
NZ_MNLG01000049.1 (KP6), NZ_JNGV01000019.1 
(NUFHKp), NZ_CP047160.1 (KP19-2029)]. 

 
Results 
General clinical characteristics 

Ninety-one CRKP strains were collected from July 
2017 to December 2019, of which five strains (5.49%) 
were non-CP-CRKP. We identified three strains as 
sequence type (ST) 11, one as ST1, and one as ST5523. 
Four strains were isolated from male patients. Three 
strains were isolated from the bile of patients who 
underwent endoscopic retrograde 
cholangiopancreatography and stone removal 
procedures. The other two strains were isolated from 

the urine of patients who had a history of indwelling 
urethral catheterization. Four of the five patients had a 
history of pre-exposure to antibiotics (Table 1). 

 
Antibiotic susceptibility  

All strains that were isolated were resistant to 
2nd/3rd/4th generation cephalosporins, cefoxitin, 
amoxicillin/clavulanic acid, quinolones and ertapenem. 
The 19_469 and 19_839 strains were resistant to 
amikacin. All strains were sensitive to imipenem, 
meropenem, tigecycline, ceftazidime/avibactam and 
polymyxin B (Table 2).  

 
Distribution of resistance genes 

The main β-lactamases subtype genes expressed by 
the five strains included blaCTX-M, blaSHV, and 
blaTEM (Table 2). Four strains carried the tigecycline 
resistance gene tet (A). The 18_674 strain carried the 
acrR gene which contained two tigecycline-resistant 
mutation sites, namely, p.M123* and p.E122K (Table 
2). All strains carried the fosA gene.  

 

Table 1. Demographic and clinical characteristics of the patients. 
Items Case 1 Case 2 Case 3 Case 4 Case 5 
Isolate 18_674 19_340 19_469 19_832 19_839 
Gender F M M M M 
Age (years) 83 67 59 77 71 

Diagnosis Choledocholithiasis 
Acute pancreatitis Choledocholithiasis 

Urinary tract infection 
Brown-Sequard 

syndrome 

Residual stones after 
biliary surgery 

Urinary tract infection 
Cerebral hemorrhage 

Specimen Bile Bile Urine Bile Urine 
Previous hospitalization 
(within 1 year) 3 1 3 0 0 

Hospital stay before 
isolated (days) 3 0 30 3 47 

ICU admission Yes No Yes No Yes 
Use of systemic steroids - - - Methylprednisolone - 
Underlying disease - Hypertension Thrombocytopenia Diabetes mellitus, COPD - 

Cathetering 
Nasogastric catheter, 

Urinary catheter, CVC, 
Tracheal cannula 

Nasogastric catheter 
Nasogastric catheter, 

Urinary catheter, CVC, 
Tracheal cannula 

Nasogastric catheter, 
Non-invasive ventilation 

Nasogastric catheter, 
Urinary catheter, CVC, 

Tracheal cannula 

Gastroscopy 
ERCP 

Otis sphincterotomy 
Biliary stent 

ERCP - 
ERCP 

Otis sphincterotomy 
Biliary stent 

- 

Previous surgery 

Cholecystectomy 
Left lateral hepatic 

lobectomy, Laparotomy 
for intestinal adhesions 

- 

Anterior cervical 
decompression and bone 
graft fusion and internal 

fixation Anterior cervical 
exploratory hematoma 

removal 

Puncture drainage of 
subphrenic abscess Right hematoma removal 

Previous use of antibiotics      
Quinolones - - Levofloxacin - - 
3rd/4th generation 
cephalosporins 

Ceftriaxone 
Cefodizime Cefdinir - - Ceftazidime - 

1st/2nd generation 
cephalosporins Cefotiam - - Cefotiam Cefuroxime 

Oxacephem - Latamoxef - Latamoxef - 
β-lactamase inhibitor Piperacillin/Tazobactam - - - - 
F: female; M: male; ICU: intensive care unit; COPD: chronic obstructive pulmonary disease; CVC: central venous catheter; ERCP: endoscopic retrograde 
cholangiopancreatography. 
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  Table 2. The K-types, ST types, resistant genotypes, plasmid types and resistant phenotypes of the 5 Klebsiella pneumoniae isolates. 

Strains K 
types STs 

Presence 
of β-

lactamase 
genes 

Chromosomal 
mutations 

Other 
resistant genes 

Plasmid 
types CXM CAZ CRO FEP AMC TZP CZA ATM FOX AK LEV SXT ETP IMP MEM TGC  

18_674 19 1 CTX-M-
55, TEM 

ompK36: p.A217S, 
p.N218H 

ompK37: p.I70M, 
p.I128M, p.N230G, 
m233_None234insQ 

Mutations 
of 

Tigecycline 
resistance: 
p.M123*, 
p.E122K 

Fosfomycin: 
fosA 

ColRNAI, 
IncFIB, 
IncFII 

≥ 64 ≥ 64 ≥ 64 ≥ 64 16 128/4 0.25/4 ≥ 32 ≥ 64 8 ≥ 8 160 1 0.125 0.25 0.5  

19_340 28 5523 
CTX-M-
3, SHV, 
TEM-1B 

ompK36: 
p.A217S 
ompK37: 

p.I70M, p.I128M 

Tigecycline: 
tet (A) 

Fosfomycin: 
fosA 

ColpVC, 
IncFII, 
IncQ 

≥ 64 ≥ 64 ≥ 64 ≥ 64 ≥ 32 32/4 1/4 ≥ 32 ≥ 64 ≤ 2 ≥ 8 ≥ 
320 4 0.5 0.5 2  

19_469 64 11 

CTX-
M-65, 
LAP-

2, 
SHV, 
TEM-

1B 

ompK37: 
p.I70M, 

p.N230G, 
p.I128M, 
p.N230G, 

m233_None234insQ 

Tigecycline: 
tet (A) 

Fosfomycin: 
fosA 

IncFII, 
IncHI1B, 

IncR, 
repB 

≥ 64 ≥ 64 ≥ 64 ≥ 32 ≥ 32 ≥ 
256/4 2/4 ≥ 32 ≥ 64 ≥ 

128 ≥ 8 ≥ 
320 2 0.125 0.5 4  

19_832 47 11 SHV, 
TEM-1B 

ompK37: 
p.I70M, p.I128M, 

p.N230G, 
m233_None234insQ 

Tigecycline: 
tet (A) 

Fosfomycin: 
fosA 

IncFIA, 
IncFII ≥ 64 ≥ 64 ≥ 64 ≥ 32 ≥ 32 ≥ 

256/4 8/4 16 ≥ 64 ≤ 1 ≥ 8 ≤ 20 2 0.25 1 0.5  

19_839 21 11 

CTX-M-
65, LAP-
2, SHV, 
TEM-1B 

ompK37: 
p.I70M, p.I128M, 

p.N230G, 
m233_None234insQ 

Tigecycline: 
tet (A) 

Fosfomycin: 
fosA 

IncFIB, 
IncFII, 
IncR, 
repB 

≥ 64 ≥ 64 ≥ 64 ≥ 64 ≥ 32 32/4 4/4 ≥ 32 ≥ 64 ≥ 
128 ≥ 8 ≥ 

320 1 0.25 0.25 2  

CXM: cefuroxime; CAZ: ceftazidime; CRO: ceftriaxone; FEP: cefepime; AMC: amoxicillin/clavulanic acid; TZP: piperacillin/tazobactam; CZA: 
ceftazidime/avibatam; ATM: aztreonam; FOX: cefoxitin; AK: amikacin; LEV: Levofloxacin; SXT: sulfamethoxazole; ETP: ertapenem; IMP: imipenem; MEM: 
meropenem; TGC: tigecycline; PB: polymyxin B. 

Figure 1. Diverse genetic lineages of Klebsiella pneumoniae. 

The network was constructed by using the CSI Phylogeny 1.4 [23]. The reference K. pneumoniae sequence is HS11286 (NC_016845.1). 
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Carbapenem-resistant antibiotic mutations 
Collectively, six mutations associated with 

carbapenem resistance were detected. The p.A217S and 
p.N218H mutations were identified in the ompK36 
gene, whereas the p.I70M, p.I128M, p.N230G, and 
m233_None234insQ mutations were identified in the 
ompK37 gene (Table 2). P.I70M and p.I128M 
mutations were detected in all five strains, and p.N230G 
and m233_None234insQ mutations were detected in 
four strains (Table 2). No mutations were observed in 
the ompK35 gene. The ompK36 deletion mutation was 
detected in the strains 19_469, 19_832, and 19_839 
(Table 2).  

 
Plasmids in non-CP-CRKP 

The plasmids were mainly subtypes of IncFI and 
IncFII. IncFII (pHN7A8) was detected in four strains 
(Table 2). 

 
Virulence genes of non-CP-CRKP 

All strains contained genes encoding type I and III 
pili, and all strains, except 18_674, expressed the IV 
flagellum gene. The efflux pump gene (acrAB), iron 
uptake genes (Ent siderophore, salmochelin), and 
secretion system genes (T6SS-I, T6SS-II, and T6SS-III) 
were detected in all strains (Table 3). The strains 
18_674 and 19_340 did not carry aerobactin-related 
genes, and 19_340 did not carry yersiniabactin-related 
genes. The allantoin utilization-related gene 
allABCERS was only detected in strain 18_674. All 
strains expressed the regulatory gene rcsAB, whereas 
none expressed the rmpA genes (Table 3).  

 
Phylogenetic network by SNPs  

Phylogenetic network of the 16 K. pneumoniae 
genomes as determined on the basis of the concatenated 

alignment of the high quality SNPs is presented in 
Figure 1. A total of 11 sequences including the 
reference K. pneumoniae sequence (NC_016845.1) 
were taken from GenBank. 

 
Discussion 

Carbapenems possess the broadest spectrum of 
antibacterial activity and are the “last resort” antibiotics 
used to treat multidrug-resistant bacterial infection [26]. 
The prevalence of carbapenem-resistant organisms 
(CROs) is increasing and has become a public health 
concern because of limitations to antibiotic therapy 
[27]. The high prevalence of non-CP-CRKP strains in 
the Asia-Pacific region needs to be addressed [28]. 
Researchers isolated 41 CRKP strains in Texas between 
2011 and 2019, of which 39% were non-CP-CRKP [5]. 
Three major mechanisms of carbapenem resistance in 
non-CP-CRKP are the overexpression of ESBLs or 
AmpC β-lactamase, resistance-nodulation-division 
efflux pumps, and decreased membrane permeability 
due to porin loss [4]. In our study, we isolated five non-
CP-CRKP strains that were not susceptible to 
ertapenem, but were susceptible to imipenem and 
meropenem. Ertapenem is most likely hydrolyzed by β-
lactamases in CRO isolates [7]. Insusceptibility to 
ertapenem is a sensitive initial screening tool for 
potential CRO isolates [29].  

A retrospective study showed that intensive care 
unit stay, exposure to any antibiotic over 30 days, and 
prior central venous catheterization or mechanical 
ventilation were risk factors for ertapenem-resistant 
Enterobacteriaceae infection [30]. It was found that 
previous hospitalization and quinolone exposure were 
also risk factors for ertapenem resistance [8]. All five 
patients in this study had experienced the risk factors 
described in the previous studies [8,30]. Increased 

Table 3. Virulence genes of Klebsiella pneumoniae. 
Virulence factors 18_674 19_340 19_469 19_832 19_839 
Type I fimbriae fim fim fim fim fim 
Type III fimbriae mrk mrk mrk mrk mrk 
Type IV pili - pilW pilU pilW pilU 
Efflux pump acrAB acrAB acrAB acrAB acrAB 
Aerobactin - - IucABCD, iutA iutA IucABCD, iutA 

Ent siderophore ent, 
fep, fes 

ent, 
fep, fes 

ent, 
fep, fes 

ent, 
fep, fes 

ent, 
fep, fes 

Salmochelin iroEN iroEN iroEN iroEN iroEN 
Yersiniabactin fyuA, irp1/2, ybt - fyuA, irp1/2, ybt fyuA, irp1/2, ybt fyuA, irp1, ybt 
Allantoin utilization all - - - - 
Regulation rcsAB rcsAB rcsAB rcsAB rcsAB 
T6SS-I tss , ompA, tle1 tss , ompA, tli1 tss , ompA, tli1 tss , ompA, tli1 tss , ompA, tli1 
T6SS-II clpV clpV clpV clpV clpV 

T6SS-III 
dotU, icmF, 

impAFGHJ, lysM, 
ompA, sciN, vgrG 

dotU, impAFGHJ, 
lysM, ompA, sciN 

dotU, impAFGHJ, 
ompA, sciN 

dotU, impAFGHJ, 
ompA, sciN 

dotU, impAFGHJ, 
ompA, sciN 
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ertapenem exposure can lead to increased ertapenem 
resistance [31]. An in vitro study suggested that 
ertapenem exposure can lead to ertapenem resistance in 
ESBL-producing E. coli strains and that the 
combination of ESBL production and porin loss may 
cause ertapenem resistance [32]. 

Researchers analyzed 404 cases of ertapenem-
insensitive non-carbapenemase-producing strains from 
the study for monitoring antimicrobial resistance trends 
(SMART) surveillance, including E. coli (n = 83), K. 
pneumoniae (n = 91), and Enterobacter species (n = 
210). This study showed that the majority (> 84%) of 
these strains were sensitive to imipenem and amikacin 
and that the strains isolated from the hepatobiliary 
system displayed lower cefepime MICs than those 
isolated from the peritoneal space [33]. In our study, 
three of the five strains were sensitive to amikacin, and 
all strains were sensitive to imipenem, meropenem, 
tigecycline, ceftazidime/avibactam, and polymyxin, 
and resistant to cefepime. However, cefepime has not 
been approved for the treatment of non-CP-CRKP 
infections in our district. A multicenter, large-scale 
prospective study is needed to better understand the 
non-CP-CRKP burden and the mechanisms involved in 
drug resistance in these strains in mainland China. 

The blaCTX-M and blaSHV genes were shown to be 
crucial for ESBL production in ertapenem-insensitive 
non-CP-CRKP in previous studies [7,34]. In contrast to 
previous studies, no ampC was detected in our study 
[7]. The spread of the β-lactamase gene is associated 
with the presence of the antibiotic resistance-associated 
plasmids IncFI, IncFII, and IncR in epidemic clones 
[35]. Similar to a previous study, our study 
demonstrated that the outer membrane proteins 
ompK36 and ompK37 had multiple carbapenem-
resistant mutation sites, which was also one of the 
important drug resistance mechanisms [5]. 

The aac(6’)-Ib-cr gene is one of the major 
determinants for plasmid-mediated quinolone 
resistance and was found in 89% of K. pneumoniae 
strains in a previous study [36]. Therefore, Muggeo et 
al. suggested that fluoroquinolones should not be used 
as alternative antibiotics for the treatment of ertapenem 
non-susceptible K. pneumoniae [36]. It has been 
suggested that the qnrS and aac(6’)-Ib-cr genes are 
responsible for the underlying quinolone resistance in 
carbapenem-insensitive K. pneumoniae and E. coli 
[37]. The presence of the qnrS1 and aac(6’)-Ib-cr in our 
strains indicated that quinolone was not the appropriate 
choice for therapy.  

The susceptibility rate of aminoglycosides, 
especially amikacin, to CRKP was previously high and 

considered in the combination therapy of CRKP [38]. 
According to the CHINET surveillance conducted in 
2019, the susceptibility rate of K. pneumoniae to 
amikacin was 82% [39]. The presence of the mutant 
genes aac(6’)-Ib, aac(3)-II, and aph(3’)-IIIa is a major 
mechanism of aminoglycoside resistance in K. 
pneumoniae [40]. In our study, two strains expressed 
the aac(6’)-Ib, aac(3)-II and aph(3’)-IIIa genes and 
were still susceptible to amikacin. Two strains with 
high MIC to amikacin had the aadA2b mutant gene. 
This suggests that this gene may play a major role in 
drug resistance.  

Tigecycline is recommended by guidelines for the 
treatment of CRKP [41]. Infection caused by 
tigecycline-insensitive K. pneumoniae leads to a high 
rate of mortality at 14 and 28 days post infection [41]. 
The 2019 CHINET surveillance report showed that 
tigecycline sensitivity of K. pneumoniae was 86.5% 
[39]. We detected the expression of the tet(A) gene in 
four strains and two acrR gene mutation sites in the 
18_674 strain. These genetic factors are associated with 
tigecycline resistance. Despite this result, all five strains 
were sensitive to tigecycline. The reason for tigecycline 
sensitivity in these strains is unclear, as tigecycline 
exposure can increase the resistance rate of susceptible 
strains [42]. Overexpression of acrAB and/or oqxAB 
genes, together with the upregulation of the regulators 
ramA and/or rarA, can lead to tigecycline resistance 
[41]. Inhibition of ramR translation can also result in 
tigecycline resistance [42].  

Recently, hvKP infections, especially carbapenem-
resistant infections, have attracted considerable 
attention [11,43,44]. hvKP is a hypermucoviscous 
strain that lacks a genetic profile description [45]. 
Factors that are associated with virulence in K. 
pneumoniae include capsular lipopolysaccharides, 
siderophores, and pili. Genes involved in allantoin 
utilization, iron transport systems, efflux pumps, and a 
type VI secretion system have been identified as new 
virulence factors in K. pneumoniae [46]. It has been 
shown that the hypermucoviscosity of K. pneumoniae 
is associated with the presence of K1, K2, and rmpA 
genes and that hypervirulent K. pneumoniae strains 
cause invasive infections, including liver abscess, 
bloodstream infection, and sepsis [47]. It was 
demonstrated that peg-344, iroB, iucA, plasmid-borne 
rmpA, and rmpA2 genes were associated with high 
virulence in K. pneumoniae [48]. IucA is a gene 
associated with hypervirulence and is highly prevalent 
in virulent CRKP [49]. IucA of the aerobactin pathway 
is a siderophore synthetase that acquires iron in iron-
depleted environments such as in a human host [50]. 
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We identified aerobactin gene deletions in strains 
18_674, 19_340, and 19_832, but it is not clear whether 
these mutations would cause reduced virulence. We 
detected only the allantoin utilization gene (allS) in the 
18_674 strain. The allS gene enhances the allantoin-
utilizing capability of bacteria to compete for nitrogen 
sources [51]. An animal study in BALB/c mice 
demonstrated that K. pneumoniae liver isolate, which 
had an allS deletion mutation, showed a significant 
decrease in virulence in intragastric infection [51]. The 
prevalence of virulence factors varied in the isolates 
found in China and the United States with aerobactin 
present in 62% of CRKP in China and 1% in the United 
States. The percentage of colibactin in CRKP strains is 
21% and 1% in the United States and China, 
respectively [52]. We did not detect colibactin in any of 
the five strains tested in this study. These differences 
may be because of the differences in the prevalence of 
strains in China and the United States, with ST11 being 
the dominant strain in China and ST258 being the 
dominant strain in the United States. 

 
Conclusions 

We isolated five non-CP-CRKP K. pneumoniae 
strains insusceptible to ertapenem. The genomic profile 
analysis revealed these strains carried β-lactamases and 
mutations in ompK36 and ompK37 genes accounting 
for ertapenem resistance. The patients infected with 
non-CP-CRKP had a history of antibiotic exposure and 
interventional operations. Some strains lacked the 
aerobactin, yersiniabactin and allantoin utilization-
related genes and all non-CP-CRKP strains did not 
carry rmpA gene. Although non-CP-CRKP is not the 
main epidemic strain in our district, clinical staff should 
also raise awareness of non-CP-CRKP infection for 
better control of CRKP infection. Prospective, 
multicenter, large-scale studies should be conducted to 
better understand the prevalence of non-CP-CRKP. 
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