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Abstract 
Introduction: The absence of predictive models for early latent tuberculosis infection (LTBI) progression persists. This study aimed to create a 
screening model to identify high-risk LTBI patients prome to active tuberculosis (ATB) reactivation. 
Methodology: Patients with confirmed ATB were enrolled alongside LTBI individuals as a reference, with relevant clinical data gathered. 
LASSO regression cross-validation reduced data dimensionality. A nomogram was developed using multiple logistic regression, internally 
validated with Bootstrap resampling. Evaluation included C-index, receiver operating characteristic (ROC) curve, and calibration curves, with 
clinical utility assessed through decision curve analysis. 
Results: The final nomogram incorporated serum albumin (OR = 1.337, p = 0.046), CD4+ (OR = 1.010, p = 0.004), and CD64 index (OR = 
0.009, p = 0.020). The model achieved a C-index of 0.964, an area under the ROC curve of 0.962 (95% CI: 0.926–0.997), sensitivity of 0.971, 
and specificity of 0.910. Internal validation showed a mean absolute error of 0.013 and 86.4% identification accuracy. The decision curve 
indicated substantial net benefit at a risk threshold exceeding 10% (1: 9). 
Conclusions: This study established a biologically-rooted nomogram for high-risk LTBI patients prone to ATB reactivation, offering strong 
predictability, concordance, and clinical value. It serves as a personalized risk assessment tool, accurately identifying patients necessitating 
priority prophylactic treatment, complementing existing host risk factors effectively. 
 
Key words: Tuberculosis; albumins; T-lymphocyte subsets; neutrophil CD64 index; nomogram. 
 
J Infect Dev Ctries 2024; 18(5):732-741. doi:10.3855/jidc.18456 
 
(Received 30 April 2023 – Accepted 23 October 2023) 
 
Copyright © 2024 Li et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 
 
Introduction 

Preventing progression from latent tuberculosis 
infection (LTBI) to active tuberculosis (ATB) is a major 
personal and public health goal. It is estimated that 23% 
(approximately 1.7 billion) of the global population are 
infected with Mycobacterium tuberculosis (Mtb) and 
have progressed to LTBI, with high-burden countries 
accounting for approximately 80% [1] and China 
accounting for a quarter of the high-burden countries 
(approximately 350 million) [2]. LTBI is viewed as a 
reservoir of pathogens for new-onset tuberculosis, and 
will progress to ATB in 5–10% of patients during their 
lifetime [3]; however, it is difficult to distinguish such 
a population from the LTBI population before the onset 
of clinical symptoms and imaging changes (i.e., those 
at high risk of progression or who have already 
progressed [4], whom we refer to as patients at high risk 
of ATB). Prophylactic treatment for the entire LTBI 
population would target a population that is too broad 
and face issues of cost, drug resistance, and drug side 
effects. Such confusion has led to delays in 

interventions and is possibly a reason for the slow 
decline in TB incidence (approximately 2% per year). 

The target populations for LTBI prophylaxis have 
recently been recommended based on the epidemiology 
of TB exposure and host risk factors [4]; however, this 
is simply a recommendation based on medical history. 
Also, differences in TB-specific antigen (TBAg) to 
phytohaemagglutinin (PHA) ratio (TBAg/PHA) in 
T⁃SPOT.TB [5], immune cytokines [6-8], iron 
homeostasis indicators [9], vitamin D2 [10], and 
neutrophil CD64 [11] have been reported between ATB 
and LTBI. These blood-based biomarker risk factors are 
primarily subjected to univariate analyses, some results 
are inconsistent, and individual risk probabilities are 
unknown; notably, these studies are independent of 
medical history. Risk scoring models for assessing ATB 
in multidrug-resistant TB and HIV (Human 
immunodeficiency virus) positive patients have also 
been reported [12,13]; nevertheless, these models are 
still based on medical history and individual 
biomarkers. To our knowledge, there are no medical 



Li et al. – Development and assessment of ATB high-risk model     J Infect Dev Ctries 2024; 18(5):732-741. 

733 

history-independent risk scoring models for patients at 
high risk of ATB in HIV-negative LTBI. 

This study aimed to develop a risk prediction model 
for patients at a high risk of ATB using data from 
countries with a high burden of TB, based on risk 
factors in blood biomarkers, and to assess its efficacy, 
to provide clinicians with a more accurate and 
personalised assessment tool to identify the target 
populations for priority prophylactic treatment, which 
may contribute to sustained reductions in TB incidence. 

 
Methodology 
Study design and sampling 

In this prospective study, we enrolled inpatients 
with confirmed ATB and recruited LTBI patients from 
1 January 2021 to 30 June 2021 at the Ankang Central 
Hospital, a general hospital with an infectious disease 
specialty, where patients with confirmed ATB were 
further managed and treated in the infectious disease 
department. The study sample size was calculated 
following the method used to develop the clinical 
prediction model [14]. The parameter for the C-index 
was set to 0.8; the incidence of ATB in LTBI was 
estimated at 0.1; the number of predictors was 13; and 
the minimum sample size calculated was 251. 

 
Inclusion criteria 

ATB group: The diagnosis of ATB complied with 
the health industry standard of the People's Republic of 
China (WS 288-2017) [15]; T-SPOT.TB examination 
and chest CT examination were completed; and one of 
the following items was met: (1) positive Mtb-
DNA/RNA test in sputum or body fluid; (2) positive 
acid-fast bacilli staining on sputum smear; (3) positive 
sputum Mycobacterium culture and the strain identified 
as Mtb. LTBI group: Recruited from healthy 
individuals with positive T-SPOT.TB, no obvious 
lesions on chest CT, and no recent respiratory-related 
manifestations. 

 
Exclusion criteria and number of cases 

(1) Non-tuberculous mycobacterial lung disease (1 
patient); (2) current use of immunosuppressants (1 
patient); (3) HIV antibody positive (2 patients); (4) 
rifampicin resistant (5 patients); (5) complicated with 
cirrhosis or tumour (2 patients); (6) complicated with 
diabetes mellitus (13 patients); and (7) complicated 
with silicosis (1 patient). 

 
Methods 

The following data were collected: (1) 
Demographic data: age, sex, height, and weight; (2) 

Immunological indexes and serum cytokines tested: 25-
hydroxyvitamin D [25-OH-VD, chemiluminescence 
immunoassay analyser (iFlash 3000-C) and supporting 
reagents from Shenzhen YHLO Biotechnology Co., 
Ltd]; Interleukin-6 (chemiluminescence instrument and 
supporting reagents from Hangzhou Precision 
Biotechnology Co., Ltd.); CD4+, CD8+, and CD64 
[Myriad Flow Cytometer (BriCyte E6) assay platform, 
lymphocyte assay kits from BD, and CD64 assay kit 
from Beijing Tongsheng Shidai Biotech Co., Ltd.]; and 
T-SPOT.TB (TB infection T cell spot diagnostic kit 
from Shanghai Fosun Long March Medical Science 
Co., Ltd.). The kit instructions were strictly followed 
and the results were interpreted according to the 
manufacturer's recommendations. The ratio of the 
maximum value of ESAT-6 or CFP-10 to PHA was 
defined as TBAg/PHA. The ATB group collects 
samples on the second working day after meeting the 
inclusion criteria, and the LTBI group collects and 
submits samples uniformly after recruitment. These 
tests were performed and reported by professionally 
trained laboratory technicians. 

 
Ethical approval 

The study complied with the Declaration of 
Helsinki, and ethical approval was obtained from the 
Ethics Committee of the Ankang Central Hospital 
(approval number ECACH-2020005). All participants 
who agreed to take part in the study gave written 
consent after figuring out the objectives, meaning, and 
advantages of the research, and that participation used 
to be voluntary. 

 
Statistical analysis 

Normally distributed measures were expressed as x̄ 
± s and non-normally distributed measures were 
expressed as M (IQR); the missing values were replaced 
with means. R software 4.1.3 (http: //www.r-
project.org) was adopted; the sample size was 
calculated using Calculates the Minimum Sample Size 
Required for Developing a Multivariable Prediction 
Model package; LASSO regression glmnet package 5-
fold cross-validation was applied to screen variables, 
and the screened variables were subjected to 
multivariate logistic regression. The nomogram was 
developed using Regression Modeling Strategies and 
pROC packages, and the receiver operating 
characteristic (ROC) curve was employed to reflect the 
nomogram’s recognition ability. Bootstrap was applied 
to resample 1000 times for internal validation of the 
model, calibration curves were adopted to judge its 
concordance, and the goodness of fit of the model was 
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subjected to the Hosmer–Lemeshow Test (HL test). 
Clinical decision curves were plotted using Risk Model 
Decision Analysis package. The model development 
and validation codes are shown in Supplementary Table 
1, and differences reached statistical significance at p < 
0.05. 

 
Results 
Patients’ characteristics 

A total of 258 study subjects were included in the 
analysis (194 men and 64 women; mean age: 56.00 
years [range: 44.00–67.25 years]; mean body mass 
index: 19.76 ± 2.64 kg/m2), were divided by inclusion 
criteria into the ATB group (223 patients, 86.43%) and 
the LTBI group (35 patients, 13.57%). Table 1 presents 
all data for both groups, including demographics and 
blood biomarkers. 

 
Feature selection 

In the cohort of 258 study subjects, 13 demographic 
and blood biomarker features were reduced to four 
potential predictors (Figure 1A and 1B) that had non-
zero coefficients in the LASSO regression model for 
further model development, namely serum albumin, 
CD4+, TBAg/PHA, and CD64. The nine excluded 
features were sex, age, body mass index, Interleukin-6, 
25-hydroxy vitamin D, CD8+, ESAT-6, CFP-10, and 
PHA. 

 
Development of a prediction model 

ATB and LTBI as dependent variables (assignment: 
LTBI = 0, ATB = 1), and serum albumin, CD4+, 
TBAg/PHA, and CD64 as independent variables, were 
included in the logistic regression. The analysis 
indicated that serum albumin, CD4+, and CD64 were 
independent risk factors, TBAg/PHA was introduced 

  

Table 1. Demographic and clinical characteristics of LTBI patient reactivated to ATB. 
Characteristics LTBI (N = 35) ATB (N = 223) 
Gender, male, N (%) 26 (74.28) 168 (75.34) 
Age, years, M (IQR) 50.00 (39.00-59.00) 57.00 (44.00-68.00) 
Body mass index, kg/m2, x̄ ± s 19.88 ± 2.54 19.61 ± 2.63 
Serum albumin, g/L, x̄ ± s 38.01 ± 3.68 30.33 ± 6.17 
Interleukin-6, pg/L, M (IQR) 0.043 (0.021-0.090) 0.045 (0.023-0.077)a 
25-hydroxy vitamin D, μg/L, M (IQR) 17.32 (13.39-21.48) 27.36 (25.53-31.00) 
CD4+, cells/uL, M (IQR) 682.00 (548.00-771.00) 300.00 (197.00-446.00) 
CD8+, cells/uL, M (IQR) 544.00 (432.00-615.00) 268.00 (184.00-372.00) 
T⁃SPOT.TB, SFCs, M (IQR) 
ESAT-6 28.00 (16.00-31.00) 67.00 (24.00-150.00) b 
CFP-10 39.00 (33.00-48.00) 76.00 (17.25-219.00) b 
PHA 321.00 (307.00-3.00) 154.50 (147.25-160.00) b 
TBAg/PHA 0.125 (0.102-0.158) 0.642 (0.299-1.692) b 
CD64 index, MFI, x̄ ± s 0.67 ± 0.34 1.26 ± 0.33c 
a 2 cases were missing; b 3 cases were missing; c 2 cases were missing. LTBI: latent tuberculosis infection; ATB: active tuberculosis; N: number of 
cases; M: median; MFI: ratio of mean fluorescence intensity; IQR: interquartile range; T⁃SPOT.TB: T cell spot test for tuberculosis infection; SFCs: spot-forming 
cells; ESAT-6: early secreted antigenic target 6 kDa; CFP-10: culture filtrate protein 10 kDa; PHA: phytohemagglutinin; TBAg: CFP-10 and ESAT-6 had a 
larger number of SFCs. 

Figure 1. Demographic and clinical feature selection using the 
LASSO binary logistic regression model. 

A. The selection of the moderating parameter (λ) in the LASSO model was 
performed by minimum standard using 5-fold cross-validation, plotting the 
mean squared error versus log (λ) with vertical dashed lines at the 
minimum λ value (0.0029) versus the minimum λ value + 1 standard 
deviation (0.0129). B. Plot of LASSO coefficient profiles for 13 clinical 
features, with each variable transformed to Rankit normal integration over 
the raw data, and coefficient profiles plotted against log (λ) series, where 
the best λ yields four non-zero coefficients for the features. LASSO, least 
absolute shrinkage and selection operator; SE, standard error. 
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  Table 2. Logistic regression analysis of active tuberculosis. 
Intercept and variable β- coefficient Sχ value Wald χ2 value p value Odds ratio 95% CI 
(Intercept) − 7.784 5.618 1.920 0.166 0.000  
Serum albumin, g/L 0.291 0.145 3.988 0.046 1.337 1.005 - 1.778 
CD4+, cells/uL 0.010 0.003 8.371 0.004 1.010 1.003 - 1.017 
TBAg/PHA, SFCs − 18.928 10.187 3.452 0.063 0.000 0.000 - 2.825 
CD64 index, MFI − 4.697 2.021 5.400 0.020 0.009 0.000 - 0.479 
β is the regression coefficient. CI: confidence interval; MFI: ratio of mean fluorescence intensity; SFCs: spot-forming cells; TBAg: CFP-10 and ESAT-6 had a 
larger number of SFCs; PHA: phytohemagglutinin. 

Figure 2. Nomogram, risk calculator, ROC-AUC and calibration curves of ATB. 

A. Column plots of ATB risk were constructed using serum albumin, CD4+, and CD64 levels in the cohort. In our line graph, the CD64 index was the largest 
risk factor for patients at high risk of ATB (100 points), followed by the serum albumin level (57 points), and CD4+ level showed the least effect on the 
probability of patients at high risk of ATB (43 points). B. Calculate the probability of ATB. C. ROC curve for nomogram, X-axis is 1-specificity, Y-axis is 
sensitivity. The ROC-AUC quantifies the performance of a classifier and falls between 0.1 and 1. The higher the value, the better the classifier’s performance, 
making it a straightforward measure for evaluation. D. The X-axis represents the predicted ATB risk, and the Y-axis represents the actual ATB risk. The 
diagonal dashed line indicates the perfect prediction of the ideal model. The solid line indicates the performance of the column plot, where closer to the 
diagonal dashed line indicates a better prediction. ATB, active tuberculosis; MFI, ratio of mean fluorescence intensity; ROC-AUC, area under the curve of 
receiver operating characteristic. 
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into the model but had no statistical significance, and 
the logistic regression model was statistically 
significant (χ2 = 136.54, p < 0.0001) with R2 = 0.750 
(Table 2). A nomogram was developed with serum 
albumin, CD4+, and CD64 (Figure 2A and 
Supplementary Table 2). The risk probabilities for 
patients at a high risk of ATB at the total scores of 95 
and 105 were 80% and 95%, respectively (Figure 2B). 

 
Apparent performance and validation of a prediction 
model 

The area under the ROC curve for the nomogram 
model was 0.962 (95% CI: 0.926–0.997), sensitivity of 
0.971, and specificity of 0.910, as shown in Figure 2C. 
The area under the ROC curve for the nomogram model 
differed from a single hazard and had a better diagnostic 
performance (Supplementary Table 3 and 4). 

Internal validation using Bootstrap resampling 
1000 times showed good concordance with a mean 
absolute error of 0.013 (C-index = 0.964); the HL test 
showed no statistical significance (χ2 = 13.798, p = 
0.087), which suggested that the performance of the 
nomogram did not deviate from the ideal goodness-of-
fit; the calibration curves showed a good overlap with 

the diagonal, with a prediction accuracy of 86.4% 
(Figure 2D). This demonstrates that the model has good 
predictive power for predicting LTBI progression to 
ATB in high-risk patients. 

 
Clinical use 

The incidence of LTBI progressing to high-risk 
ATB was set at 0.1 and the decision curve analysis for 
the nomogram is shown in Figure 3. The curve shows 
that the nomogram provides the highest net benefit 
within a risk threshold of > 10% compared to patients 
predicted to be at high risk of ATB or not. The cost-
effectiveness ratio is 1:9 within this threshold, which is 
better than other single risk factors. 

 
Discussion 

The biological risk factors for the progression of 
LTBI to tuberculosis are clinically difficult and topical. 
In this study, we developed and validated a simple and 
intuitive statistical prediction model that improves the 
detection of patients at a high risk of ATB, and its high 
sensitivity is regarded as the start of prophylactic 
treatment. The detection of the predictors CD4+ and 
CD64 is possible in most cases. 

Figure 3. Decision curve analysis for the nomogram and risk factors. 

The X-axis represents the high-risk threshold and the Y-axis represents the net benefit. The black straight line represents the hypothesis that patients are all 
not predicted to be high risk for ATB after nomogram assessment, with a net benefit rate of 0. The grey sloping line represents the hypothesis that LTBI 
patients are all predicted to be high risk for ATB after model assessment. The red curve indicates the decision curve for the nomogram model for patients at 
high risk of ATB. The decision curves show that when the threshold probability of LTBI and ATB high risk patients is >10%, the column line graph was used 
in the current study to predict a greater increase in benefit for ATB high risk patients than for all patients at risk or not at risk. ATB, active tuberculosis; LTBI, 
latent tuberculosis infection; MFI, ratio of mean fluorescence intensity. 
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The findings revealed that patients with ATB had 
lower serum albumin levels and that serum albumin was 
the final independent variable included in the model, 
which was more contributory. The mechanism for 
serum albumin decrease could be: (1) decreased 
anabolism due to a reduced nutrient intake caused by 
gastrointestinal disorders and loss of appetite, as some 
studies [16] reported a 44.2% reduction in the baseline 
albumin secretion rate in patients complicated with 
tuberculosis, and (2) increased catabolism due to Mtb 
using body protein for its metabolism [17]. Because of 
its half-life of 15–20 days [18] and good robustness, 
albumin may be more valuable in the differentiation 
from LTBI. In the present study, patients had a 1.337-
fold increased risk of ATB per unit decrease in albumin, 
which could be a major factor in TB progression. 
Column 1 of the index variable in the nomogram model 
was serum albumin, with a maximum score of 57, and 
the score was higher when the patient's albumin was 
lower, suggesting that clinical caregivers should adopt 
nutritional support measures. The predictive value of 
albumin in ATB has recently gained more attention, 
similar to the report of related studies [19-21].  

As an essential anti-inflammatory and pro-
inflammatory factor, interleukin-6 affects the 
occurrence and development of various diseases by 
regulating the body's response to infection, injury, and 
immune reactions. Studies have demonstrated that 
interleukin-6 is associated with poor prognosis and 
early treatment response in tuberculosis [22,23]. 
However, these studies have targeted people with 
diabetes and HIV-tuberculosis co-infection, with no 
such difference observed in our study. This may be 
related to the body's different immune responses and the 
severity of tuberculosis. 

25-OH-VD may induce the formation of 
phagosomes via phosphatidylinositol-3-kinase 
products, thus limiting the intracellular growth of Mtb 
in macrophages [24]. On the one hand, vitamin D can 
inhibit the response of pro-inflammatory cytokines and 
enhance the anti-inflammatory response. Contradictory 
results are reported in the clinical trials assessing the 
correlation between vitamin D and the incidence of 
tuberculosis [25,26]. The results of this study showed 
that in patients with ATB, serum levels of 25-OH-VD 
were significantly higher than those in LTBI, but this 
effect is not statistically significant and was not taken 
into consideration in the final model. The potential role 
of vitamin D supplementation in reducing the risk of 
tuberculosis still requires further evaluation through 
randomized controlled trials. 

CD4+ T lymphocytes are the major cells in the 
immune response to tuberculosis infection, and there is 
a basic consensus that Mtb infection may induce low 
CD4+ expression [27,28] by interfering with the 
proximal and downstream signals of T cells to 
downregulate CD4+ cell activation through secreted 
proteins, which results in Th1/Th2 imbalance [29,30]. 
In the present study, a simultaneous decrease in CD4+ 
and CD8+ was observed, showing a strong positive 
correlation (r = 0.706, p < 0.0001; Supplementary 
Figure 1); however, ultimately only CD4+ had a 
significant effect in the model, possibly because CD8+ 
function partly relied on CD4+ [31]. CD4+ is related to 
tuberculosis activity, which agrees with the findings of 
Orlando et al. [32]. The maximum score in the 
nomogram model was 43 (Column 2 of the index 
variable), suggesting that decreased cellular immunity 
is crucial to TB activity. Previous studies have 
demonstrated that the T-SPOT.TB results are 
influenced by T lymphocytes [33,34] which have a 
limited value in distinguishing LTBI from ATB, with a 
significantly higher specificity when the TBAg/PHA 
ratio is used. QuantiFERON-TB Gold Plus and T-
SPOT.TB demonstrated similar diagnostic performance 
[35]. Zhang et al. reported a higher sensitivity in the 
diagnosis of recent infections [36], while Wang et al. 
indicated a certain correlation between bacterial load 
and disease severity [37]. These studies provide 
evidence for the theory that tuberculosis immunity falls 
under the category of infection immunity, also known 
as “infection-induced immunity”. The predictive 
efficacy for ATB may rely more on quantitative 
differences, but comprehensive large-sample, long-
term follow-up studies are still lacking. The data in the 
present study found similar differences between the 
two: TBAg/PHA was included in the final model at 
multivariate analysis; however, the effect was not 
significant (p > 0.05), indicating that CD4+ T 
lymphocytes performed better than CD8+ and 
TBAg/PHA in the diagnosis of ATB. A more detailed 
study of the function and specificity of the Mtb-reactive 
CD4+ T cell phenotype at the single cell level may 
uncover more valuable potential indexes. 

CD64 is a receptor that recognises the IgGFc 
segment (i.e., FcγRⅠ) and is expressed on the surface of 
monocytes and macrophages, whereas in neutrophils its 
expression is significantly upregulated with 
inflammatory cytokine stimulation [38], inducing 
reactive oxygen species production and triggering 
antibody-dependent cell-mediated cytotoxicity for 
phagocytosis and bactericidal action [39,40]; moreover, 
CD64 can over-stimulate the monocyte respiratory 
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burst in mononuclear phagocytes to promote Mtb 
control. The increase usually starts 4–6 hours after 
inflammatory factor stimulation and peaks at 22 hours 
[41,42], which has been described as the 
"whistleblower" of the inflammatory factor storm. The 
CD64 index considers the differences in cellular 
expression between individuals and has good stability 
and accuracy. Our results demonstrated that the CD64 
index in patients with ATB had increased expression 
and a score of 100 in the nomogram model, which 
should be taken more seriously in TB activity and could 
be a new index for identifying patients at a high risk of 
progression from LTBI to ATB, similar to what has 
been reported in related studies [11,43-45]. Future 
research needs to validate the use of neutrophil CD64 
in clinical practice as a complementary diagnostic tool 
for managing Mtb infection. 

The nomogram combined the above three factors to 
visualise the risk probability in patients at high risk of 
ATB. The nomogram allowed us to interpret individual 
needs for interventions according to the risk level, and 
both doctors and patients could easily use the scoring 
system to make personalised predictions of TB activity 
risk, which accords with the current trend towards 
personalised medicine and helps doctors make 
informed clinical decisions. Furthermore, the study 
defined risk thresholds, and the nomogram performed 
better and had higher yields compared to single risk 
factors. Thus, the model can be used for screening high-
risk groups and periodic re-assessment of TB risk, 
which contributes to the primary prevention of 
pulmonary TB. 

Limitations of this study: (1) This study was an 
analysis of inpatients, and the lack of subjects with early 
progression of TB may have affected the sensitivity of 
the model. (2) The serum albumin and CD4+ values may 
vary with different regions and delays in attendance, 
and specific application is required for practice. (3) The 
data were obtained from a single hospital, the 
population may not be well represented, and 
multicentre, large sample studies are needed for internal 
and external validation. The study optimised the 
biomarker risk factors for patients at high risk of 
progression from LTBI to ATB, and for the first time 
developed a nomogram identification model with a 
superior net benefit, filling the gap of no validated 
screening assessment between those at high risk of 
progression after Mtb infection and those under 
effective control. Several promising diagnostic 
biomarkers warrant further study, including 
recombinant methylated Mtb heparin-binding 
hemagglutinin interferon-γ release assay (rmsHBHA 

IFN-γ) [46], a transcriptomic signature of tuberculosis 
(RISK11) [47], iron-related biomarkers (including 
serum iron, ferritin and transferrin) [48], a 5-protein 
panel (complement factor H related 5, leucine rich 
alpha-2-glycoprotein 1, C-reactive protein, 
lipopolysaccharide binding protein and serum amyloid 
A1) [49], and gamma-glutamylthreonine and hsa-miR-
215-5p [50]. 

 
Conclusions 

Low levels of serum albumin and CD4+ as well as 
high CD64 levels are independent risk factors for 
patients at high risk of progression from LTBI to ATB, 
and such patients should be alert to the possibility of 
developing ATB. The nomogram identification model 
we developed demonstrated good prediction, 
concordance, and possible clinical utility. This study 
provides a potential personalised assessment tool for 
identifying patients at high risk of LTBI progressing to 
ATB, and in addition to identifying high-risk patients 
who require prophylactic treatment, it serves as a 
prominent addition to host risk factors. Future efforts 
could be made to reduce ATB incidence by prioritising 
more aggressive prophylactic/treatment measures in 
high-risk patients. 
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Annex – Supplementary Items 
 
Supplementary Table 1. Related Computer Programs for Nomogram With R. 
For LASSO 
Library (glmnet) 
Set current working directory and parameters 
data=read.csv("atbmodel.csv") 
head(data) 
x <- as.matrix(data[, 2:14]) 
y <- as.matrix(data[, 1]) 
lasso <- glmnet(x, y, family = "binomial",alpha = 1) 
print(lasso) 
lasso.coef 
plot(lasso, xvar = "lambda", label = TRUE) 
set.seed(317) 
lasso.cv = cv.glmnet(x, y, nfolds = 5) 
plot(lasso.cv) 
lasso.cv$lambda.min 
lasso.cv$lambda.1se 
lasso.coef <- predict(lasso,s = 0.0129, type = "coefficients") 
 
For Nomogram 
Library (rms) 
attach(data) 
dd<-datadist(data) 
options(datadist='dd') 
fit1<-lrm(y~serum_albumin+CD4+CD64_index,data=data,x=T,y=T) 
fit1 
summary(fit1) 
nom1<-nomogram(fit1,fun=plogis,fun.at=c(.01,0.1,seq(.2,.8,by=.2),.95),lp=F,funlabel="y") 
plot(nom1) 
cal1<-calibrate(fit1,method='boot',B=1000) 
plot(cal1,xlim=c(0,1.0),ylim=c(0,1.0)) 
 
For Decision Curve Analysis 
library(rmda) 
library(ggplot2) 
data<-read.csv('atbmodel.csv',sep = ',') 
res_blue<- decision_curve(y~serum_albumin, data=data,family=binomial(link='logit'),thresholds=seq(0,1, 
by=0.01),confidence.intervals=0.95,study.design='case-control',population.prevalence= 0.1) 
 
res_green<- decision_curve(y~CD4, data=data,family=binomial(link='logit'),thresholds=seq(0,1, 
by=0.01),confidence.intervals=0.95,study.design='case-control',population.prevalence= 0.1) 
res_yellow<- decision_curve(y~CD64_index, data=data,family=binomial(link='logit'),thresholds=seq(0,1, 
by=0.01),confidence.intervals=0.95,study.design='case-control',population.prevalence= 0.1) 
 
res_red<- decision_curve(y~serum_albumin+CD4+CD64_index, data = data,family = binomial(link = 
'logit'),thresholds = seq(0,1, by = 0.01),confidence.intervals = 0.95,study.design = 'case-
control',population.prevalence = 0.1) 
list<- list(res_blue, res_green, res_yellow, res_red) 
plot_decision_curve(list,curve.names=c('res_blue ','res_green',' 
res_yellow','res_red'),cost.benefit.axis=FALSE,col=c('blue','green','yellow','res_red'),confidence.interv
als=FALSE,standardize=FALSE) 
summary(complex,measure = 'NB') 
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Supplementary Table 2. Calculate the point of ATB. 
Predictors Category Nomogram score 
Current serum albumin levels (g/l) ≤ 15 57 

20 49 
25 41 
30 33 
35 24 
40 16 
45 8 

≥ 50 0 
Current CD4+ cell count (cells/ul) 0 43 

200 38 
400 32 
600 27 
800 22 
1000 16 
1200 11 
1400 5 

≥ 1600 0 
Current CD64 index ≥ 2.2 100 

2.0 91 
1.8 82 
1.6 73 
1.4 64 
1.2 55 
1.0 45 
0.8 36 
0.6 27 
0.4 18 
0.2 9 
0 0 

 
 
 
 
 
 
Supplementary Table 3. Results of comparison with the area under the curve between nomogram model and a single risk factor. 
 Difference between two 

areas Sχ  value 95% CI for difference Z value p value 

Nomogram Vs. Serum albumin 0.107 0.026 0.056－0.158 4.116 < 0.0001 

Nomogram Vs. CD4+ 0.068 0.016 0.036－0.100 4.179 < 0.0001 

Nomogram Vs. CD64 index 0.063 0.027 0.011－0.115 2.374 0.018 

Serum albumin Vs. CD4+ 0.038 0.030 (-0.020)－0.096 1.301 0.193 

Serum albumin Vs. CD64 index 0.044 0.041 (-0.037)－0.124 1.067 0.286 

CD4+ Vs. CD64 index 0.005 0.035 (-0.064)－0.075 0.152 0.879 
CI: Confidence interval. 
 
 
 
 
 
Supplementary Table 4. Performance of risk factors and model for predicting ATB high-risk patients. 
Risk factors Youden index (%) Cutoff value Sensitivity (%) Specificity (%) Positive predictive 

value (%) 
Negative predictive 

value (%) 
Serum albumin 64.25 33.26 94.29 69.96 67.00 98.73 
CD4+ 70.18 498.50 88.57 81.61 43.06 97.85 
CD64 index 72.38 0.815 80.00 92.38 62.22 96.71 
Nomogram 88.17 2.804 97.14 91.03 62.96 99.51 
ATB: active tuberculosis. 
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Supplementary Figure 1. The correlation between CD4+ and 
CD8+ T lymphocyte counts. 
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