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Abstract 
Introduction: Studies in different populations have shown that single-nucleotide polymorphisms (SNPs) of tumor necrosis factor-alpha (TNFα) 
and TNF receptors 1 and 2 (TNFR1 and TNFR2) may be involved in the pathogenesis of lepromatous leprosy (LL). To further explore the 
results in a Mexican population, we compared the frequencies of the polymorphisms in - 308 G>A TNFA (rs1800629), - 383 A>C TNFRS1A 
(rs2234649), and + 196 T >G TNFSR1B (rs1061622) genes in LL patients (n = 133) and healthy subjects (n = 198).  
Methodology: The genotyping was performed with the polymerase chain reaction-based restriction fragment length polymorphism (PCR–
RFLP) technique. Statistical analysis was performed using the χ2 test, within the 95% confidence interval. Odds ratios (OR) were calculated 
and Hardy-Weinberg equilibrium was verified for all control subjects and patients.  
Results: We found an association between the TNFSR1 -383 A>C genotype and the risk of lepromatous leprosy when leprosy patients were 
compared to controls (OR = 1.71, CI: 1.08-2.69, p = 0.02). Furthermore, it was also associated with the risk of LL in a dominant model (AC + 
CC vs AA, OR: 1.65, 95% CI: 1.05-2.057, p = 0.02). Similar genotype and allele frequencies for the SNPs TNFA - 308 G>A and TNFSR2 + 
196 T>G were observed between leprosy patients and healthy subjects.  
Conclusions: The TNFSR1 -383 A>C could be a potential marker for the identification of high-risk populations. However, additional studies, 
using larger samples of different ethnic populations, are required. 
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Introduction 

Leprosy is caused by the intracellular pathogen 
Mycobacterium leprae which infects macrophages and 
Schwann cells. It causes damage to the skin and 
peripheral nerves that lead to distinct clinical 
manifestations based on the host immune response 
against the pathogen. Leprosy is characterized by a 
spectrum of clinical presentations and can be 
categorized into two stable forms or poles known as the 
tuberculoid (TT) and lepromatous leprosy (LL); as well 
as the three borderline forms that are known as 
borderline-tuberculoid leprosy (BT), borderline leprosy 

(BB) and borderline lepromatous leprosy (BL). TT 
patients manifest a strong cellular immune response, 
mediated by macrophages and Th1 lymphocytes, which 
results in few, localized, and often self-healing 
paucibacillary lesions. In LL, the opposite pole, the 
immune response is mediated by antibodies and Th2 
cytokines, with the presence of foamy macrophages that 
allow the bacilli to propagate and cause extended 
multibacillary lesions on the skin and nerves [1]. This 
variability of the host response to infection seems to be 
influenced by genetic and environmental factors. 
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The tumor necrosis factor alpha (TNFα) functions 
as a key immunoregulatory cytokine. It is secreted by 
macrophage/monocytes, lymphocytes, and endothelial 
cells, with important biological effects on the 
inflammatory response in several infectious and 
autoimmune diseases [2,3]. This cytokine plays an 
important role in the host response against intracellular 
bacterial infections and contributes to granuloma 
formation, synthesis of nitric oxide, and chemotaxis of 
immune cells [4,5]. The functions of TNFα are 
mediated by the TNFR1 and TNFR2 receptors, which 
induce activation of the transcriptional factors NF-κB 
and AP-1 [6]. TNFR1 is expressed in several cells and 
it is the main regulator of the TNFα functions, such as 
proliferation, apoptosis, and necroptosis [6,7]. TNFR2 
is mainly expressed in T and B lymphocytes, 
endothelial cells, and myeloid cells [6,8]. Interaction of 
TNFα with TNFR2 activates a signaling pathway that 
induces cell proliferation and survival thus having a 
major pro-inflammatory effect [6]. 

The genes encoding TNFα and its receptors have 
polymorphic variants that have been associated with 
several pathologies. The TNFA gene is located on 
chromosome 6 (6p21.31). A single nucleotide 
polymorphism (SNP) in the promoter region of this 
gene at the -308 position replaces guanine with adenine 
(-308G>A, rs1800629), leading to enhanced 
transcription of the gene and increased activity of the 
cytokine. This polymorphism has been associated with 

leprosy [9–11] and pulmonary tuberculosis in different 
populations [12].  

TNF receptor superfamily member 1A (also called 
CD120a, TNFR1, and TNFRp55/p60) is encoded by the 
TNFRSF1A gene which is located on chromosome 12 
(12p13.31). A SNP at the -383 position results in a 
change of an adenine to a cytosine (-383A>C, 
rs1061622) in the promoter region, conferring an 
increase in the gene transcription. This has also been 
studied in different autoimmune pathologies, such as 
ankylosing spondylitis, type 1 diabetes, and rheumatoid 
arthritis in different populations [13–16]. 

The TNF receptor superfamily member 1B (also 
called CD120b and p75/p80) is encoded by the gene 
TNFRSF1B which is located on chromosome 1 
(1p36.22). It contains a SNP that substitutes thymine for 
guanine at position +196 of the gene (rs1061622, 
ATG → AGG), which leads to a change of methionine 
(M) to arginine (R) in the extracellular domain of the 
receptor and affects receptor ability to activate NF-kB 
[16–18]. This SNP is associated with autoimmune 
disorders, such as systemic lupus erythematosus and 
rheumatoid arthritis in Asian populations [19,20].  

Based on the above, the objective of this study was 
to determine the association of the polymorphisms -308 
G>A TNFA, -383 A>C TNFRS1A, and 196 T>G 
TNFSR1B with lepromatous leprosy in the mestizo 
population of western Mexico. 

 
 

Table 1. Primer sequences of TNFA, TNFR1, and TNFR2 genes. 

Gene Primers PCR conditions Restriction 
enzyme Reference 

TNFA (-308) 
 

5´-AGGCAATAGGTTTTGAGGGCCAT-3´ 
5´-TCCTCCCTGCTCCGATTCCG-3´ 

Initial denaturation: 94°C for 3 
min 
35 cycles of: 
94°C for 30 sec 
60°C for 30 sec 
72°C for 30 sec 
Final extension: 72°C for 1 min  

NcoI 
 

2% agarose gel 
electrophoresis 

[24] 

TNFR1 (-383) 
 

5´-TTATTGCCCCTTGGTGTTTGGTTG-3´ 
5´-GGAGGGGAAGAGTGAGGCAGTGTT-3´ 

Initial denaturation: 95°C for 5 
min 
30 cycles of: 
95°C for 1 min 
60°C for 1 min  
72°C for 1 min 
Final extension: 72°C for 5 min  

BgllI 
 

2% agarose gel 
electrophoresis 

[25] 

TNFR2 (+196) 
 
 

5´-ACTCTCCTATCCTGCCTGCT-3´ 
5´-TTCTGGAGTTGGCTGCGTGT-3´ 

Initial denaturation: 95°C for 5 
min 
35 cycles of: 
95° C for 1 min 
57°C for 1 min  
72°C for 1 min 
Final extension: 72°C for 5 min  

NlaIII 
 

4% agarose gel 
electrophoresis 

[26] 

PCR: polymerase chain reaction. 
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Methodology 
Patients and healthy subjects 

We took samples of peripheral blood from 133 
patients diagnosed with LL according to the 
international criteria defined by Ridley and Jopling [21] 
from the Instituto Dermatologico de Jalisco, SSA, “Dr. 
Jose Barba Rubio” in Guadalajara, Mexico. All patients 
were treated with the multidrug therapy (MTD) as 
proposed by the World Health Organization (WHO). 
The control group consisted of 198 healthy subjects 
(HS) who were gender and age matched. All HS were 
at least 18 years old. Patients and HS were mestizos 
from Western Mexico. Mestizos are a population of 
mixed ancestry resulting from the colonial Spaniards 
and Amerindians [22], and are genealogically native 
from Western Mexico ancestors for at least three 
generations.  

 
DNA sample preparation 

Whole blood samples were collected in tubes with 
ethylenediaminetetraacetic acid (EDTA) as an 
anticoagulant via venipuncture from patients and HS. 
Genomic DNA was isolated by the standard 
methodology described previously [23].  

 
 PCR-RFLP screening of TNFA TNFR1 and TNFR2 
polymorphisms 

Polymorphisms analysis for TNFA (-308 A>G), 
TNFR1 (-383 A>C), and TNFR2 (T>G; codon 196) 
were performed according to modified protocols from 
previously reported assays [24–26]. Briefly, PCR 
amplification of the promoter or coding region of the 
genes was performed using specifically designed pairs 
of oligonucleotide primers, which were then identified 
by a restriction enzyme assay. The primer sequences, 
annealing temperatures for PCR, and restriction 
enzymes used in each assay are listed in Table 1.  

 

Ethical considerations 
The protocol was approved by the ethics, research, 

and biosecurity committees of the Instituto 
Dermatologico de Jalisco, SSA, “Dr. Jose Barba 
Rubio”, Secretaria de Salud from Jalisco state, Mexico. 
All research was performed according to the 
Declaration of Helsinki amended in Brazil in 2013 [27] 
and according to Mexico’s regulations for studies on 
human health. Informed consent was signed by all the 
individuals included in the study. 

 
Statistical analysis 

Hardy-Weinberg equilibrium was tested among the 
healthy subjects in the population under investigation. 
The relative association of genotype and allelic 
frequencies among patients and controls was assessed 
by the Chi-square (χ2) test or Fisher’s exact test when 
necessary. Odds ratio (OR) and 95% confidence 
interval (CI) for relative risks were calculated. The 
statistical significance level was p < 0.05. All statistical 
calculations were performed with Statistical Package 
for Social Sciences (SPSS, version 11.0, for Windows). 
 
Results 
Clinical evaluation of the study groups 

The demographic and clinical features of the LL 
patients and the HS included in the study are presented 
in Table 2. The diagnosis of LL was based on clinical, 
histopathological, and bacilloscopic studies. The LL 
group consisted of 59% males and 41% females, with a 
mean age of 53 ± 18.8 years, and a disease duration of 
10 ± 7.9 years. The reference group included 198 
healthy volunteers, with a mean age of 43 ± 15.18 years, 
matched to the patients by age and gender. 

 
Genotypic and allelic frequencies of TNF - 308 G>A, 
TNFRSF1A - 383 A>C, and TNFRSF1B + 196 T>G 
variants  

Allelic and genotypic frequencies of TNF - 308 
G>A, TNFRSF1A -383 A>C, and TNFRSF1B + 196 

Table 2. Clinical and demographic characteristics of patients with lepromatous leprosy and healthy subjects. 
Characteristics LL (n = 133) HS (n = 198) 
Age, mean ± SD 53 ± 18.08 40.21 ± 15.18 
Disease duration (years), mean ± SD  10 ± 7.9 - 
Gender   
Female (%) 41 47 
Male (%) 59 53 
Family history (%) 44 - 
Bacilloscopy (%, ++/+++)  100 - 
Treatment (PCT) (%) 53 - 
New cases (%) 47 - 

Quantitative variables are expressed as means ± standard deviations (SD) and qualitative variables as frequencies and percentages (%) as noted. Family history 
refers to at least one first-grade family who has been infected with leprosy bacilli. Bacilloscopy samples were taken from ear smears. LL, lepromatous leprosy; 
HS, healthy subjects. PCT, polychemotherapy (rifampicin, clofazimine, dapsone).  
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T>G polymorphisms were calculated in all subjects to 
identify the polymorphisms involved in LL 
susceptibility (Table 3). All the variants were in Hardy-
Weinberg equilibrium in the HS group (p>0.05).  

No significant differences were observed in the 
frequencies of the TNF -308 G>A SNP between the 
groups of patients and HS. Our results showed that the 
TNF - 308 GG was the most frequent genotype among 
LL (61.65%,82/133) and HS (66.16%, 131/198) and the 
genotype distribution pattern did not differ significantly 
(p = 0.31). 

The A allele of the TNFRSF1A - 383 polymorphism 
was more frequent in the HS group (73.98%, 293/396) 
than LL group (68.04%, 181/266) (Table 3), although 

no significant differences were observed. Comparing 
the genotypic frequencies between LL patients and HS, 
we found a higher frequency of the AC genotype among 
LL patients (54.89 %, 73/133) than HS (41.92 %, 
83/198; OR = 1.71, CI: 1.08-2.69, p = 0.02). 

Regarding the TNFRSF1B + 196 T>G variant 
analysis, no statistically significant differences were 
observed in the allele distribution between LL patients 
and HS (p = 0.66). The frequency of the TT genotype 
was 62.41% (83/133) in the LL group and 62.63% 
(124/198) in the HS group.  

Allelic frequencies of all three polymorphisms 
showed similar distribution patterns between HS and 

Table 3. Genotype and allele distributions of TNFA - 308 G>A, TNFRSF1A - 383 A>C, and TNFRSF1B 196 T>G polymorphisms of 
patients with lepromatous leprosy and healthy subjects.  

Polymorphism LL (n = 133); % (n) HS (n =198); % (n) OR (CI 95%) p value 
TNFA -308 G > A 
(rs1800629) 

    

Genotype    0.32 
GGb 61.65 (82) 66.16 (131)  1  
GA 38.35 (51) 32.83 (65)  1.25 (0.77-2.033) 0.33 
AA 0 (0) 1.01 (2)  0.80 (0.01-15.6) 0.85 
EHW p = 0.05     
Allele     
Gb 82.82 (215)  82.57 (327)  1  
A 19.17 (51)  17.42 (69) 1.12 (0.74-1.71) 0.57 
Do     
GGb 61.65 (82) 66.16 (131)  1  
GA+AA 38.34 (51)  33.83 (67)  1.21 (0.75-1.97) 0.40 
TNFRSF1A -383 A > C  
(rs2234649) 

    

Genotype    0.07 
AAb 40.60 (54)  53.03 (105)  1  
AC 54.89 (73)  41.92 (83)  1.71 (1.06-2.76) 0.02 
CC 4.51 (6)  5.05 (10)  1.17 (0.33-3.76) 0.78 
HWE p = 0.27     
Allele     
Ab 68.04 (181)  73.98 (293)  1  
C 31.95 (85)  26.01 (103) 1.33 (0.93-1.90) 0.1 
Do     
AAb 40.60 (54)  53.03 (105)  1  
AC+CC 59.39 (79)  46.96 (93)  1.65 (1.03-2.64) 0.03 
TNFRSF1B +196 T > G  
(rs1061622) 

    

Genotype    0.66 
TTb 62.41 (83)  62.63 (124)  1  
TG 30.83 (41)  32.83 (65)  0.94 (0.56-1.56) 0.80 
GG 6.77 (9)  4.55 (9)  1.49 (0.50-4.44) 0.41 
HWE p = 0.83     
Allele     
Tb 77.81 (207)  79.04 (313)  1  
G 22.18 (59) 20.95 (83)  1.07 (0.72-1.59) 0.71 
Do     
TTb 62.41 (83) 62.63 (124) 1  
TG + GG 37.59 (50) 37.37 (74) 1.00 (0.62-1.63) 0.97 

Percentages were obtained by direct count; p value was calculated by χ2 test; LL: lepromatous leprosy; OR: odds ratio; 95% CI: 95% confidence interval; HWE: 
Hardy-Weinberg equilibrium; Do: analysis of dominant and codominant model; b reference category. 
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LL and none of the genetic models was associated with 
the risk of developing LL (p>0.05). 

Dominant and codominant genetic models were 
applied to analyze the associations between the TNF - 
308 G>A, TNFRSF1A - 383 A>C, and TNFRSF1B + 
196 T>G polymorphisms and LL. The results showed 
that the TNFRSF1A - 383 AA genotype was 
significantly associated with increased risk for LL in the 
dominant model (AC + CC vs AA, OR: 1.65, 95% CI: 
1.05-2.057, p = 0.02). However, no significant 
association was found for TNF - 308 G>A and 
TNFRSF1B + 196 T>G when we compared the LL 
group with the HS group in any genetic model of 
inheritance analyzed. 
 
Discussion 

Leprosy is a chronic infectious disease, caused by 
the obligate intracellular pathogen M. leprae. The TT 
spectrum of leprosy is characterized by a strong cell 
immune response accompanied by the expression of 
Th1 cytokines like TNFα that induce the activation of 
macrophages. These in turn produce inducible nitric 
oxide synthase (iNOS) and release free radicals to 
destroy the mycobacteria. Meanwhile, the expression of 
Th2 cytokines in the LL spectrum leads to a humoral 
immune response, which is inefficient against an 
intracellular pathogen such as M. leprae [28].  

Not all individuals who are chronically exposed to 
this mycobacterium develop the clinical manifestations 
of leprosy. Several studies have tried to elucidate the 
genetic factors involved in the development of this 
complex disease. It is unlikely that a single genetic 
marker can provide an efficient prognosis since the 
immune response depends on the controlled expression 
of several genes, which ultimately induce an efficient 
immune response and thus contribute to specific 
clinical manifestations in patients with leprosy.  

SNPs provide relevant information since they can 
be used as genotypic markers of specific disease 
phenotypes and can regulate biological phenomena that 
influence mRNA expression, thereby altering mRNA 
isoforms (unraveling cryptic splicing sites) or may be 
involved in the modification of the enzymatic activity 
of genes related to leprosy. Many SNPs of 
immunoregulatory genes have been studied to describe 
their participation in the susceptibility of the host 
leading to the development of leprosy per se or some 
leprosy poles [29]. A significant association between 
the TNFA promoter polymorphism at the - 308 position 
(G>A transition) has been extensively associated with 
several autoimmune and inflammatory disorders, as 

well as infections such as leprosy due to the increased 
production of TNFα.  

We failed to find an association between the - 308 
G>A polymorphism in the TNFA gene with 
susceptibility to LL in Mexican patients. However, 
Mexico is a country with high genetic heterogeneity and 
distinctive patterns of linkage disequilibrium according 
to the geographic regions. Our results regarding the 
distribution of this SNP are similar to a previous study 
carried out on the population of Mexican mestizo 
patients from the northwest state of Sinaloa [30]. On the 
other hand, our results are in contrast with a previous 
investigation in which a significant association was 
found between the TNFA - 308 A allele and LL patients 
in India [31]. Furthermore, in a study of Brazilian 
patients, the G/G genotype was associated with 
resistance against LL compared with healthy controls 
[32]. Nevertheless, according to Cordeiro dos Santos et 
al., no significant associations were observed between 
the TNFA - 308 polymorphism and the susceptibility to 
leprosy in Brazilian Amazon patients (MB and PB 
forms) [33]. 

TNFα exerts its biological effects by binding to its 
receptors, TNFR1 and TNFR2 [6]. Some studies have 
described that the pro-inflammatory and pathogen-
killing functions of TNF are regulated mainly through 
its binding to TNFR1 [34]. Recent evidence suggests 
that TNFR1 has a relevant role in the pro-inflammatory 
and antitumoral responses, as well as resistance to viral 
and bacterial infections [35–39]. 

The - 383 A>C TNFR1A (rs2234649) SNP has been 
identified as a susceptibility factor or predictive marker 
in patients with invasive pulmonary aspergillosis, 
ankylosing spondylitis, rheumatoid arthritis, Crohn's 
disease, and Sjögren syndrome [40–44]. To the best of 
our knowledge, its association with leprosy 
susceptibility has not been previously evaluated. Our 
data suggest that subjects who are heterozygous (AC) 
for this SNP have a higher risk of LL development. 
Another important finding of our study is the genetic 
risk for LL in the combined AC/CC genotype compared 
to the AA genotype when we applied a dominant model 
of inheritance analysis.  

Therefore, it is necessary to perform additional 
studies to establish the role of TNFR1 - 383 A>C SNP 
with leprosy per se, the spectrum of leprosy, response 
to treatment, and prognosis. These studies could be 
focused on examining the functional role of this SNP in 
leprosy and the regulation of the cellular events 
involved in the gene expression, as well as the 
production of either soluble or membrane-bound 
TNFR1. In this sense, an alternative transcription may 
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play a role in the regulation of the expression of 
TNFRSF1A. This regulation may be modulated by 
polymorphisms in the gene (rs4149570, rs767455, and 
rs1800692) that lead to the elimination of exons 2 and 
6 during mRNA maturation, which have been described 
as markers of susceptibility to inflammatory diseases 
[45–48]. Therefore, it would be interesting to perform 
further functional and genetic analysis of those SNPs to 
establish the combined effect of genotypes (haplotypes) 
and their association with the host susceptibility to M. 
leprae infection or leprosy clinical manifestations. 

A relevant point to consider in the regulation of the 
immune response in leprosy is the interaction of TNFα 
with its receptor TNFR2, a transmembrane protein 
necessary for differentiation [49] and survival of T cells 
[50], as well as signaling in the regulation of 
inflammatory responses mediated by TNFα [51]. 
Studies carried out in TNFR2 knock-out mice suggest 
that this receptor participates in the development of 
neurovascular lesions in experimental models of 
malaria [52], in the early control of experimental 
melioidosis [39], as well as in the regulation of the 
inflammatory process in pleurisy induced by 
mycobacteria [53]. On the other hand, changes in the 
regulation of this receptor could be involved in various 
inflammatory, infectious and autoimmune diseases 
[16,54–57]. The TNFR2 deleterious effects in these 
pathologies have been attributed to an increase of the 
soluble form in biological fluids due to the TNFR2 + 
196 polymorphisms.  

The association between genetic polymorphisms 
and susceptibility to infectious diseases has been 
demonstrated by several authors. Ghamari et al. 
analyzed the + 196 T>G polymorphism of TNFRSF1B 
in Iranian patients with pulmonary tuberculosis but did 
not find any significant association [12]. Accordingly, 
we found no association between the + 196 T>G 
polymorphism and the LL patients. Therefore, it would 
be interesting to evaluate other genetic variants of 
TNFR2 to elucidate the complex regulation of these 
pathways. In addition, further studies could analyze 
their association with changes in the soluble TNFR2 
levels and TNFR2 membrane expression, which could 
affect the cytokine profile and contribute to the 
resistance or susceptibility of the host to M. leprae. 

This study had some limitations. We were able to 
recruit only five patients with TT and we did not have 
patients with the other clinical forms of the disease. 
Therefore, it was not possible to perform an association 
analysis with a group of patients who had different 
clinical presentations than LL.  

Our study also had some strengths. The healthy 
subjects group belonged to the same geographic region 
(Western Mexico) as the patients’ group, and, therefore, 
shared their ethnic composition.  

Based on the results of our study, we consider that 
it is necessary to delve into association studies of genes 
involved in immunological pathways of the innate and 
adaptive immune response that participate in the 
establishment of the infection, the diverse host 
responses that determine the development of one of the 
clinical spectra of leprosy, and the probable disease 
evolution. The information gathered from these studies 
may help to determine the eventual outcome more 
accurately.  
 
Conclusions 

Our results suggest that the TNFRSF1A - 383 A>C 
is a SNP associated with susceptibility to LL in Western 
Mexican patients. However, we did not observe any 
association between leprosy and the studied SNPs in the 
TNFA and of TNFRS1B genes. Therefore, it would be 
interesting to analyze other genetic variants in TNFR1 
and their participation in the immune responses in the 
different clinical forms of leprosy and other infectious 
diseases. In addition, much remains to be known about 
how these genes and their interaction with 
environmental factors may participate and determine 
the final phenotype in patients with leprosy. Accurate 
profiling of genetic variants may help identify risk 
populations and new treatment strategies. 
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