Original Article

Coexistence of β-lactamase genes and biofilm forming potential among carbapenem-resistant Acinetobacter baumannii in Lahore, Pakistan

Maqsood Arif¹, Amina Asif², Kiran Nazeer ${ }^{1}$, Sikander Sultan¹, Saba Riaz ${ }^{1,3}$
${ }^{1}$ Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
${ }^{2}$ Ameerudin Medical College/Post Graduate Medical Institute/Lahore General Hospital, Lahore, Pakistan
${ }^{3}$ Citilab and Research Centre, 525-A Faisal Town, Lahore, Pakistan

Abstract

Introduction: Our goal was to investigate the antimicrobial resistance due to beta-lactamase genes and virulent determinants (biofilm-forming ability) expressed by Acinetobacter collected from health settings in Pakistan. A cross-sectional study was conducted for the molecular characterization of carbapenemases and biofilm-producing strains of Acinetobacter spp. Methodology: Two twenty-three imipenem-resistant Acinetobacter isolates were analyzed from 2020 to 2023.The combination disk test and modified hodge test were performed. Biofilm forming ability was determined by polystyrene tube assay. Multiplex polymerase chain reaction (PCR) for virulent and biofilm-forming genes, and 16S rRNA sequencing were performed. Results: 118 (52.9%) carbapenem-resistant Acinetobacter (CR-AB) were isolated from wounds and pus, 121 (54.2%) from males, and 92 (41.2%) from 26-50-years-olds. More than 80% of strains produced β-lactamases and carbapenemases. Based on the PCR amplification of the ITS gene, 174 (78.0%) CR-AB strains were identified from CR-Acinetobacter non-baumannii (ANB). Most CR-AB were strong and moderate biofilm producers. Genetic analysis revealed the blaOXA-23, bla $a_{T E M,}$ bla $_{C T X-M}$ bla $_{N D M-I}$ and bla ${ }_{V M}$ were prevalent in CR-AB with frequencies 91 $(94.8 \%), 68(70.8 \%), 19(19.7 \%), 53(55.2 \%), 2(2.0 \%)$ respectively. Among virulence genes, OmpA was dominant in CR-AB isolates from wound ($83,86.4 \%$), csuE 63 (80.7%) from non-wound specimens and significantly correlated with bla $a_{N D M}$ and blaOXA genes. Phylogenetic analysis revealed three different clades for strains based on specimens. Conclusions: CR-AB was highly prevalent in Pakistan and associated with wound infections. The genes, bla $a_{\text {AX- } 23}$, bla $_{\text {TEM }}$, bla $_{\text {CTX-M, }}$, and bla $a_{N D M-}$ I were detected in CR-AB. Most CR-AB were strong biofilm producers with virulent genes OmpA and csuE.

Key words: Acinetobacter; β-lactamases; carbapenemases; virulence genes; biofilm.
J Infect Dev Ctries 2024; 18(6):943-949. doi:10.3855/jidc. 19119
(Received 26 August 2023 - Accepted 14 November 2023)
Copyright © 2024 Arif et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Acinetobacter species, including Acinetobacter baumannii (AB), are a significant cause of nosocomial infections. AB is a notorious opportunistic pathogen associated with various infections, including pneumonia, septicemia, and urinary tract infections [1]. These infections have become difficult to treat due to the growing prevalence of antibiotic resistance among the clinical strains of this species [1,2]. The excessive use of antibacterial drugs has made Acinetobacter species resistant to many available antibiotics. Multidrug resistance in AB is achieved by various mechanisms, including transforming target sites, enzymatic deactivation of drugs, decreased drug absorption by increasing efflux pumps, or reducing permeability and biofilm formation [3]. Carbapenems, the β-lactam antibiotics, have been considered to be the most effective antibiotics to cure AB infections. However, their effectiveness has been compromised
due to increased resistance against these antibiotics, mediated by the emergence of β-lactamases of B and D classes [4]. The spread of carbapenem-resistant A. baumannii (CR-AB) and carbapenem-resistant Acinetobacter non-baumannii (CR-ANB) strains has been reported globally, leading towards a major health threat due to limited choice of treatment options [5].

AB with increased multidrug resistance and its ability to produce biofilms, allows the bacteria to persist and thrive in hospital settings on biotic and abiotic surfaces [6]. Earlier studies have documented a strong relationship between the ability of AB to form biofilms and its elevated antibiotic resistance [6,7]. Various virulence determinants are thought to be responsible for biofilm formation, such as the outer membrane protein (OmpA), chaperon usher pilus (Csu), extracellular exopolysaccharide (EPS), two-component system $\mathrm{BfmS} / \mathrm{BfmR}$, and quorum sensing system [7]. OmpA, the $38-\mathrm{kDa}$ porin protein of AB , has a significant role
in biofilm development. The CsuA/BABCDE gene is necessary for the pilli formation to adhere to the abiotic surfaces. It has been reported that deactivating the csuE gene eradicates pili and biofilm production [8]. Multidrug resistance and virulence determinants significantly contribute to the severity of the infection in their host. There are limited reports on resistant gene expression and virulent determinants among CR-AB and CR-ANB from Pakistan. Moreover, resistance to a commonly prescribed antibiotic such as beta-lactam drugs is high, posing severe challenges to public health. This study aimed to assess and investigate the antimicrobial resistance (beta-lactamase genes) and virulent determinants (biofilm-forming ability) expressed by AB isolates collected from health settings in Pakistan.

Methodology

Study design
Acinetobacter clinical isolates were collected from three tertiary care hospitals and a Lahore diagnostic centre (with > 112 collection centres all over Pakistan) between 2020 to March 2023. Following guidelines of the Centers for Disease Control and Prevention (CDC) USA, only the isolates obtained from patients with localized or systematic infection during their stay at the hospital were considered. The Citi Lab and Research Centre Ethics Committee approved the study (Ref \# $25^{\text {th }}-12$ CLRC/ 25-12).

Isolation of bacteria and antimicrobial susceptibility testing (AST)

Different specimens; such as wounds, sputum, blood, pus, urine, and nasal secretions; were collected and cultured on routine media. Biochemical tests were done to identify isolated colonies and reconfirmed by API-NE (biomerieux Marcy-l'Étoile, France). The disk diffusion method determined the antibiotic susceptibility pattern of each Acinetobacter isolate according to the Clinical and Laboratory Standards Institute (CLSI) guidelines [9]. Thirteen antibiotics, including ampicillin (AMP), aztreonam (ATM), amoxicillin + clavulanic acid (AMC), cefalexin (CEF), cefixime (CXM), ceftriaxone (CRO), amikacin (AK), gentamicin (CN), tetracycline (TE), ciprofloxacin (CIP), trimethoprim/sulfamethoxazole (SXT), osfomycin (FF), and Piperacillin-tazobactam (TPZ) were tested.

Phenotypic detection of carbapenemases

Based on AST results, the production of extended spectrum beta lactamases (ESBLs) and metallo beta-
lactamases (MBLs) was confirmed by combination disk test (CDST) and modified Hodge test (MHT) [10]. In CDST, an imipenem disc and a combined disc of imipenem with EDTA (inhibitory supplement) were tested on a Mueller-Hinton agar plate as per the method [10]. In MHT, a meropenem disk was placed in the center of the test area on the Muller Hinton Agar (MHA) plate, and test isolates were streaked in a straight line from the edge of the disk to the edge of the plate. In the boronic acid disc test, imipenem and meropenem discs alone, and combined with aminophenyl boronic acid (APB) were tested on the same plate [10].

Biofilm formation assay

A polystyrene tube assay was performed to determine the ability of biofilm formation by each A. baumannii isolate. A volume of $30 \mu \mathrm{~L}$ of an overnight culture with $\mathrm{OD}_{600}=0.1$ was incubated in 1.5 mL of Mueller-Hinton broth contained in polystyrene (12 mm $\times 75 \mathrm{~mm}$) tubes. After 48 h incubation at $37^{\circ} \mathrm{C}$, phosphate-buffered saline (PBS) was added three times to wash the adherent cells on the walls of the tubes. Crystal violet (0.02%) was added, incubated for 10 min , and discarded. Ethanol solvent was added and vortexed for 5 minutes to elute the stain from adherent cells. The optical density of each eluted solvent was measured at 580 nm using a UV-visible spectrophotometer. The assay was repeated thrice. The following formula was used to evaluate the results: ODc (optical density cutoff value $)=$ average OD of negative control $+(3 \times \mathrm{SD}$ of negative control) [11].

Carbapenemase gene detection

Common carbapenemase genes of AB and ANB, including bla $a_{I M P,}$ bla $a_{V I M,}$ bla $a_{O X A-23}$, bla $a_{N D M-1,}$ bla $a_{C T X-M,}$, and bla $_{\text {TEM }}$ were detected by polymerase chain reaction (PCR). Multiplex PCR was used using primers for carbapenems genes bla $a_{O X A}$ and bla ${ }_{\text {TEM }}$ after optimizing the PCR cycle (Table 1). The PCR cycle included initial denaturation at $95{ }^{\circ} \mathrm{C}$ for 5 min ; then 35 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 1 minute, annealing at $58^{\circ} \mathrm{C}$ for 30 seconds, and elongation at $72^{\circ} \mathrm{C}$ for 1 minute; and final elongation at $72{ }^{\circ} \mathrm{C}$ for 10 minutes. The annealing temperature was $47^{\circ} \mathrm{C}$ for 1 minute, followed by $55^{\circ} \mathrm{C}$ for 1 minute for blatem, Species conserved region identification gene $I T S$, and virulence genes OmpA and csuE, were also amplified. Amplification conditions for the ITS, OmpA, and csuE, genes were initial denaturation at $95^{\circ} \mathrm{C}$ for 1 minute; then 35 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 1 minute, annealing at 56
${ }^{\circ} \mathrm{C}$ for 1 minute, and extension at $72^{\circ} \mathrm{C}$ for 1 minute; and finally, $72^{\circ} \mathrm{C}$ for 10 minutes (Table 1).

$16 S$ rRNA sequencing and phylogenetic analysis

rRNA sequencing of ten representative strains were performed. The amplicons were sequenced by $1^{\text {st }}$ Base (www.base.asia.com) and the assembled sequences were compared with a sequence database (GenBank) using BLAST. A phylogenetic tree was created for the maximum-likelihood analysis with bootstrap values corresponding to 1000 replications using the molecular evolutionary genetics analysis (MEGA 11, NJ) software [10,13].

Statistical analysis

The frequencies and percentages of categorical variables were calculated. Pearson correlation test (two tailed), using SPSS (IBM SPSS Statistics 23.0) was applied to assess the relationship of antimicrobial resistance and virulence genes.

Results

Distribution of isolates and screening of $C R-A B$
A total of 223 strains included in the study were imipenem-resistant Acinetobacter. More than half of the study strains were isolated from wound swab/pus specimens (118, 52.9\%), followed by blood (43, 19.2%), urine ($28,12.5 \%$), respiratory secretions (21 , 9.4%), and others ($13,5.8 \%$). The distribution of infection by age group were $26-50$ years ($92,41.2 \%$), followed by $0-25$ years ($67,30 \%$), $51-75$ years (51 , 22.8%), and >75 years ($13,5.8 \%$) (Table 2).

Table 2. Distribution of isolates according to different parameters.

Study parameter	n (\%)
Strains screened	413
ImpR	$223(53.9)$
Demographic Data	
Gender-based distribution	$121(54.2)$
Male	$102(45.7)$
Female	
Age-wise distribution	$67(30.0)$
$0-25$	$92(41.2)$
26-50	$51(22.8)$
51-75	$13(5.8)$
>75	
Sample Source	$118(52.9)$
Wound/Pus/swab/discharge	$21(9.4)$
Respiratory secretions	$43(19.2)$
Blood	$28(12.5)$
Urine	$13(5.8)$
Others	
Phenotypic detection tests	$196(87.8)$
MHT	$190(85.2)$
CDST + EDTA	$188(84.3)$
CDST + PBS	

ImpR: imipenem resistant strains; MHT: modified Hodge test; CDST + EDTA: combined disk synergy test with ethylenediaminetetraacetic acid; CDST + PBS: combined disk synergy test with phosphate buffered saline.

Phenotypic detection of $C R-A B$

Penicillin and cephalosporins had the highest resistance rate for isolates from wound and non-wound specimens. The resistance rate of bacteria isolated from non-wound specimens were AMP (91\%), ATM (89\%), AMC (90%), CEF (89%), CXM (90%), CRO (89%), AK (64\%), CN (70\%), CIP (67\%), SXT (86\%) FF (91%) and TPZ (66%) (Figure 1A). Similar trends of antibiotic resistance were noticed for strains isolated from wound samples. CEF, CXM, and CRO were mostly non-susceptible. Half of the strains were resistant to TE (50\%) (Figure 1B). Colistin was the least resistant drug with 99% sensitivity in both groups. Overall, the strains' resistance rates were > 55\% against all tested antibiotics. β-lactamases production was

Table 1. Primers sequences with amplicon sizes.

Gene	Primer sequence ($5^{\prime}->3^{\prime}$)	Amplicon size (bp)	Reference
$b l a_{\text {IMP }}$	Forward-GGAATAGAGTGGCTTAAYTCTC Reverse-GGTTTAAYAAAACAACCACC	232	[12]
$b l a_{\text {VIM }}$	Forward-GATGGTGTTTGGTCGCATA Reverse-CGAATGCGCAGCACCAG	390	[12]
$\operatorname{bla}_{\text {NDM }}$	Forward-GGTTTGGCGATCTGGTTTTC Reverse-CGGAATGGCTCATCACGATC	621	[12]
$b^{\text {ba }}$ OXA	Forward-GCGTGGTTAAGGATGAACAC Reverse-CATCAAGTTCAACCCAACCG	438	[12]
blactx-m	Forward-GACGATGTCACTGGCTGAGC Reverse-AGCCGCCGACGCTAATACA	500	[13]
blatem $^{\text {a }}$	Forward- ATGAGTATTCAACATTTCCG Reverse- CTGACAGTTACCAATGCTTA	862	[14]
ITS	Forward- CATTATCACGGTAATTAGTG Reverse- AGAGCACTGTGCACTTAAG	208	[15]
Omp A	Forward- GTTAAAGGCGACGTAGACG Reverse- CCAGTGTTATCTGTGTGACC	578	[15]
csuE	Forward- CATCTTCTATTTCGGTCCC Reverse- CGGTCTGAGCATTGGTAA	168	[15]
16S rRNA	Forward- AGAGTTTGATCCTGGCTCAG- Reverse- GGTTACCTTGTTACGACTT	1400	[16]

Table 3. Distribution of different bla genes among the CR-AB and CR-ANB.

bla class	bla gene	Wound/pus ($\mathrm{n}=118$)		Others ($\mathrm{n}=105$)	
		$\begin{gathered} \text { CR-AB n (\%) } \\ I T S+=96(81.3 \%) \end{gathered}$	$\begin{gathered} \text { CR-ANB n (\%) } \\ \text { ITS- }=22(18.6 \%) \end{gathered}$	$\begin{gathered} \text { CR-AB n (\%) } \\ \text { ITS }+=78 \text { (74.2\%) } \end{gathered}$	$\begin{gathered} \text { CR-ANB n (\%) } \\ \text { ITS- }=27(25.7 \%) \end{gathered}$
Class A	bla $_{\text {TEM }}$	68 (70.8)	4 (18.1)	35 (44.8)	3 (11.1)
	bla $_{\text {CTX }}$	19 (19.7)	2(9.0)	13 (16.6)	4 (14.8)
Class B	$b^{\text {la }}$ VM	2(2.0)	0 (0)	0 (0)	0 (0)
	$b^{\text {b }} a_{\text {IMP }}$	0 (0)	0 (0)	0 (0)	0 (0)
	$b^{\text {b }} a_{N D M-1}$	53 (55.2)	3 (13.6)	40 (51.2)	2 (7.4)
Class D	bla ${ }_{\text {OXA }}$	91 (94.8)	10 (46.5)	69(88.4)	10 (37)
Virulent genes	OmpA	83 (86.4)	9 (40.9)	64(82.0)	9(33.3)
	CsuE	74 (77.0)	12 (54.5)	63 (80.7)	10 (37)

CR-AB: carbapenem-resistant Acinetobacter baumannii; CR-ANB: carbapenem-resistant Acinetobacter non baumannii.
confirmed by MHT, CDST + EDTA, and CDST + PBS in $87.8 \%, 85.2 \%$, and 84.3% of isolates, respectively.

Molecular characterization of resistance/virulence genes and biofilm determinants

Based on the amplification of ITS gene by PCR, 174 (78.0\%) CR-AB strains were identified and 49 (21.9\%) strains were from CR- Acinetobacter non-baumannii (ANB). Out of 174 CR-AB, 96 (55%) were wound isolates, and 78 (44.8%) non-wound specimens. ANB were also grouped into isolates from wound ($22,44.9 \%$) and non-wound samples ($27,55 \%$). Genetic analysis of CR-AB from wound revealed that Class D bla ${ }_{O X A-23}$ was the most frequent among the investigated genes (91, 94.8%), followed by bla $_{\text {TEM }}$ ($68,70.8 \%$), bla $_{\text {NDM-l }}$, (53 , $55.2 \%)$, bla $_{\text {CTX-M }}(19,19.7 \%)$, and bla $_{\text {VIM }}(2,2 \%)$ strains. $b l a_{I M P}$ was not detected in any of the tested isolates. Among CR-AB from non-wound specimens, numbers (percentages) of bla $_{O X A-23}$, bla $_{\text {NDM-I }}$, bla $_{\text {TEM }}$, and bla $_{\text {CTX-M }}$ were 69 (88.4%), 40 (51.2%), 35 (44.8%), and 13 (16.6%), respectively. bla ${ }_{V I M}$ and $b^{\prime} a_{I M P}$ were not detected in any strain. The virulence genes OmpA and csuE were more than 77% in CR-AB and less than 55% in the ANB group (Table 3).

Biofilm formation in A. baumannii

Out of 174 , strong biofilm-formers CR-AB were the most common ($90,51.7 \%$), followed by moderate and weak biofilm formers (58 (33.3\%) and 17 (9.7\%), respectively). Only $9(5.1 \%)$ of strains were nonbiofilm forming. OmpA (85, 48.8\%), and csuE (72, 41.3%), were mainly detected in strong biofilm formers (Table 4).

Figure 1A. Graphical representation of AST trends in non-wound samples; B. Graphical representation of AST trends in wound samples. Orange indicates resistance; blue indicates sensitivity.

AMP: ampicillin; ATM: aztreonam; AMC: amoxicillin-clavulanic acid; CEF: cefixime; CTX: cefotaxime; CRO: ceftriaxone; AK: amikacin; CN: gentamycin; TE: tetracycline; CIP: ciprofloxacin; SXT: septran; FF: Fosfomycin; TZP: tazobactam-piperacillin.

Table 4. Correlation of biofilm-related genes and biofilm formation $(\mathrm{n}=174)$.

			Biofilm related genes Isolates/gene $\%$		
Biofilm formation	Isolates/biofilm formation \%	OmpA	CsuE		
${ } }$		$3 / 1.7$	$4 / 2.2$		
Weak biofilm	$17 / 9.7$	$15 / 8.6$	$12 / 6.9$		
Moderate biofilm	$58 / 33.3$	$54 / 31.0$	$49 / 28.1$		
Strong biofilm	$90 / 51.7$	$85 / 48.8$	$72 / 41.3$		

$C R-A B$ harbours a combination of genes

All the genes (bla ${ }_{O X A-23}$, bla $_{\text {TEM }}$, bla $_{\text {CTX-M }}$, bla $a_{N D M,}$ and $\left.b l a_{V I M}\right)$ were amplified from one of the strains. The combination of bla $_{O X A-23}+$ bla $_{\text {TEM }}$ and $b l a_{O X A-23}+$ bla $_{\text {NDM-1 }}$ was present in $82(47.1 \%)$ and $40(23 \%)$ strains, respectively. Other combinations were bla $a_{C T X}$ ${ }_{M}+$ bla $_{\text {NDM-I }}, \quad$ bla $_{\text {TEM }}+$ bla $_{\text {NDM, }}$, and bla $_{\text {TEM }}+$ bla $_{\text {CTX-M }}$ detected in 18 (10.34%), 17 (9.77%), and 15 (8.62%) strains respectively. Only one strain with blaoxa${ }_{23}+$ bla $_{\text {VIM }}$ was detected. However, the coexistence of virulence genes OmpA and csuE in biofilm-forming CR-AB was detected in 139 (79.9\%) strains (Table 5). Statistical analysis showed that the presence of bla $_{N D M}$ and $b^{\prime} a_{O X A}$ genes were correlated with the presence of $b l a_{O M P}$ and bla $_{C \text { suE }}$ in study strains (p value <0.05) (Table 5, 6).

16S rRNA sequencing

The neighbor-joining tree was constructed by 16 S rRNA gene sequence data isolated from different specimens. One of the clades showed a close relationship between strains isolated from blood and urine. Among the three clades, two clades were generated for non-surgical wound and pus samples, and post-surgical wound and pus samples (Figure 2).

Discussion

AB is labelled as a "red alert" pathogen because of the development of antibiotic resistance to all the available antibiotics and the ability to survive in harsh environmental conditions through biofilm formation. Previous studies revealed that the drug-resistant $A B$ had evolved their target sites for antibiotics and efflux pumps and enzymatically degraded the antibiotics of β lactam and aminoglycoside families [7]. Here, we assessed the virulent determinants and biofilm-forming ability in CR-AB isolates collected from health settings in Pakistan. Infections were more common among people in the age group $26-50$ years and males. Our results revealed that most isolated $A B$ strains were more resistant to cephalosporins and carbapenems. Numerous studies have reported the high prevalence of CR-AB in Pakistani clinical settings [17-20]. A study showed 7% of AB strains isolated from clinical samples in Lahore with high levels of resistance to all

Table 5. Coexistence of bla and carbapenemases genes.

$b l a g e n e s$	$\begin{gathered} \text { CR-AB } \\ \text { isolates } \\ \mathbf{n}=\mathbf{1 7 4}(\%) \end{gathered}$
bla OXA $-23,^{\text {b }}$ bla ${ }_{\text {NDM }-1}$	40 (23.0)
	1 (0.57)
blatem, blandM-1	17 (9.77)
blaoxa-23, blatem	82 (47.1)
blaoxa-23, blavim,	1 (0.57)
blatem, blactх-м,	15 (8.62)
blacte-m, $^{\text {b }}$ la $_{\text {NDM-I }}$	18 (10.34)
Coexisting virulent genes (OmpA + csuE)	139 (79.9)

antibiotics, including carbapenems [17,18]. Shahid et al., also found that more than 50% of AB isolates were non-susceptible to aminoglycosides [19]. Moreover, the percentages of imipenem and meropenem-resistant AB strains have risen globally from 39.0% and 30.1% in 2005 to 72.3% and 71.5% in 2021, respectively [20].

Colistin has been reported as one of the best choices of drug with sensitivity rate 96.2%, similar to our findings [17]. Our results were concordant with a previous study in which more than 80% of CR-AB strains were also confirmed for carbapenemase production [21]. Based on the species conserved region of identification ITS, 174 strains were identified as AB and 49 as ANB species. When investigating bla genes in both groups, we detected the presence of blaOXA-23 in most CR-AB. Previous literature has revealed the prevalence of oxacillinases producing CR-AB carrying $b_{l a X A-23}$ in Pakistan [18,22]. Indeed, the blaOXA-23 gene belonging to ST2 resides on plasmids responsible for the acquisition and diffusion of carbapenemresistance genes in CR-AB. In addition, strong promotor sequences of ISAbal and ISAba4 upstream of $b^{b l a} a_{O X-23}$ contribute to dissemination in the environment [22]. This study highlights the seriousness of the matter. The bacterial species of our region are becoming resistant to almost all antibiotics, and we are left with little to no choice of antibiotic-based treatments.

Regarding the coexistence of carbapenemase genes, the most common combination was bla $a_{\text {OXA }}+$ bla $_{\text {TEM, }}$, followed by bla $a_{O X A}+b l a_{N D M}$. These combinations make the primary resistance profile of any strain. The coexistence of bla OXA and bla TEM in CR-AB was detected by Han et al. in China using reverse

Table 6. Pearson correlation of bla and carbapenemases genes with virulence genes.

AMR genes	$\boldsymbol{b l a}_{\text {OMP }}$	Significance (2-tailed)	$\boldsymbol{b l a}_{\boldsymbol{C s u L}}$	Significance (2-tailed)
$\boldsymbol{b l a}_{\boldsymbol{T E M}}$	0.946	0.054	0.863	0.137
$\boldsymbol{b l a}_{\boldsymbol{C T X M}}$	0.755	0.245	0.545	
$\boldsymbol{b l a}_{\boldsymbol{V M}}$	0.629	0.371	0.479	
$\boldsymbol{b l a}_{\boldsymbol{N D M}}$	$1.000^{* *}$	0.000	0.958^{*}	
$\boldsymbol{b l a}_{\boldsymbol{O X A}}$	$1.000^{* *}$	0.000	0.962^{*}	0.521

[^0]transcriptase quantitative PCR (RT-qPCR) [23]. In this study, most biofilm-forming strains carried virulence genes OmpA and csuE. OmpA and csuE that encode porin proteins and pili, enabling the bacteria to adhere effortlessly to several medical devices and host epithelial cells. So, it plays a crucial role in infection invasion and persistence in hospital settings. Therefore, catheter-related infections are associated with AB [2426]. Several studies investigated the biofilm formation ability associated with antibiotic resistance in AB. Boiofilms can reduce antibiotic absorption into bacterial cells, and bacteria can thrive under harsh environments with multidrug resistance [27]. Scientists have also claimed that carbapenem-resistant strains can produce more biofilm than carbapenem-susceptible strains [28]. Positive correlation of csuE gene with the presence of ISAbal suggested that biofilm formation enhances the virulence of strains [29]. These findings predict that the infections of CR-AB and CR-ANB strains are difficult to treat due to resistance to all antibiotics. The virulence of these strains has increased many folds due to survival in harsh conditions and increased resistance to therapies.

This study has a few limitations. Firstly, the sample size was small. Secondly, strains were analyzed for only carbapenemases production. Antibiotic resistance may also be due to other proteins, such as efflux pumps and synergistic or antagonistic mechanisms.

Conclusions

The study identified a high frequency of CR-AB. $b^{b l a} a_{O X-23}$ was the most prevalent, followed by bla $a_{N D M-1}$. $b l a_{\text {CTX-M }}$ and bla $_{\text {TEM. }}$. A combination of different genes was also observed to be responsible for limiting the therapeutic options. A high percentage of virulent determinants OmpA and csuE contributed to pathogenesis of isolates. This also highlighted the biofilm-forming potential, which enhanced antimicrobial resistance in $A B$ and transmission in clinical isolates in our health setting.

Acknowledgements

We hereby acknowledge the CEOs of Citilab and Research Centre, Lahore.

Funding

Partial funding was covered by HEC NRPU Project 15493.

Authors' contributions

MA: experiments, data analysis; AA: strains collection and screening; KN : experiment and data analysis; SS : supervision, SR: conceptualization, investigation, supervision, funding acquisition, validation.

References

1. Abdar MH, Taheri-Kalani M, Taheri K, Emadi B, Hasanzadeh A, Sedighi A, Sedighi M (2019) Prevalence of extendedspectrum beta-lactamase genes in Acinetobacter baumannii strains isolated from nosocomial infections in Tehran, Iran. GMS Hyg Infect Control 14: 2196-5226.
2. Sobouti B, Mirshekar M, Fallah, S, Tabaei A, Mehrabadi JF, Darbandi A (2020) Pan drug-resistant Acinetobacter baumannii causing nosocomial infections among burnt children. Med J Islam Repub Iran 34: 24. doi: 10.47176/mjiri.34.24.
3. Kaushik V, Tiwari M, Joshi R, Tiwari V (2022) Therapeutic strategies against potential antibiofilm targets of multidrugresistant Acinetobacter baumannii. J Cell Physiol 237: 20452063. doi: 10.1002/jcp. 30683.
4. Nucleo E, Steffanoni L, Fugazza G, Migliavacca R, Giacobone E, Navarra A, Landini P (2009) Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol 9: 1-14. doi: 10.1186/1471-2180-9-270.
5. De Freitas SB, Amaral SC, Ferreira MRA, Roloff C, Moreira C, Conceição FR, Hartwig DD (2020) Molecular characterization of carbapenem-resistant Acinetobacter baumannii associated with nosocomial infection in the Pelotas, RS, Brazil. Curr Microbiol 77: 2724-2734. doi: 10.1007/s00284-020-02060-w.
6. Alamri AM, Alsultan AA, Ansari MA, Alnimr AM (2020) Biofilm-formation in clonally unrelated multidrug-resistant Acinetobacter baumannii isolates. Pathogens 9: 630. doi: 10.3390/pathogens9080630.
7. Zeighami H, Valadkhani F, Shapouri R, Samadi E, Haghi F (2019) Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis 19: 1-9. doi: 10.1186/s12879-019-4272-0.
8. Ghasemi E, Ghalavand Z, Goudarzi H, Yeganeh F, Hashemi A, Dabiri H, Foroumand M (2018) Phenotypic and genotypic investigation of biofilm formation in clinical and environmental isolates of Acinetobacter baumannii. Arch Clin Infect Dis 13: e12914. doi: 10.5812/archcid. 12914.
9. Bauer A (1966) Antibiotic susceptibility testing by a standardized single diffusion method. Am J Clin Pathol 45: 493-496. doi: 10.1093/ajcp/45.4_ts.493.
10. Abouelfetouh A, Torky AS, Aboulmagd E (2019) Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrob Resist Infect Control 8: 1-9. doi: 10.1186/s13756-019-0611-6.
11. Yang CH, Su PW, Moi, SH (2019) Biofilm formation in Acinetobacter baumannii: genotype-phenotype correlation. Molecules 24: 1849. doi: 10.3390/molecules24101849.
12. Poirel L, TR. Walsh V. Cuvillier, P. Nordmann (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70: 119-123. doi: 10.1016/j.diagmicrobio.2010.12.002.
13. Abrar S, NU Ain, H Liaqat, S Hussain, F Rasheed, S Riaz (2019) Distribution of blactх-м, blaтем, blashv and blaoxa genes in extended-spectrum- β-lactamase-producing clinical isolates: a three-year multi-center study from Lahore, Pakistan. Antimicrob Resist Infect Control 8: 1-10. doi: 10.1186/s13756-019-0536-0.
14. Zarabadi-Pour M, Peymani N, Habibollah-Pourzereshki MR, Sarookhani AA, Karami A Javadi (2021) Detection of extended-spectrum β-lactamases among Acinetobacter baumannii isolated from hospitals of Qazvin, Iran. Ethiop J Health Sci 31: 2. doi: 10.4314/ejhs.v31i2.4.
15. Madaha EL, HK Gonsu, RN Bughe, MC Fonkoua, CN Ateba, W F Mbacham (2020) Occurrence of blatem and blactхм genes and biofilm-forming ability among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii in Yaounde, Cameroon. Microorganisms 8: 708. doi: 10.3390/microorganisms8050708.
16. Lee MJ, SJ Jang, XM Li, G Park, JK Kook, MJ Kim, YH Chang, JH Shin, SH Kim, DM Kim (2014) Comparison of $r p o B$ gene sequencing, $16 S r R N A$ gene sequencing, $\operatorname{gyr} B$ multiplex PCR, and the VITEK2 system for identification of Acinetobacter clinical isolates. Diagn Microbiol Infect Dis 78: 29-34. doi: 10.1016/j.diagmicrobio.2013.07.013.
17. Altaf U, Saleem Z, Akhtar MF, Altowayan WM, Alqasoumi AA, Alshammari S, Batool N (2023) Using culture sensitivity reports to optimize antimicrobial therapy: findings and implications of antimicrobial stewardship activity in a hospital in Pakistan. Medicina 59: 1237. doi: 10.3390/medicina59071237.
18. Khurshid M, Rasool MH, Siddique MH, Azeem F, Naeem M, Sohail M, Nisar MA (2019) Molecular mechanisms of antibiotic co-resistance among carbapenem resistant Acinetobacter baumannii. J Infect Dev Ctries 13: 899-905. doi: 10.3855/jidc. 11410.
19. Shahid A, Muzammil S, Rasheed F, Aslam B, Ali MA, Haider SZ, Khurshid M (2021) Emergence of armA mediated aminoglycoside resistance in multidrug-resistant Acinetobacter baumannii in Pakistani hospitals. Pak J Zool 53: 2507-2510. doi: 10.17582/journal.pjz/20210520200559.
20. Liu C, Chen K, Wu Y, Huang L, Fang Y, Lu J, Chen S (2022) Epidemiological and genetic characteristics of clinical carbapenem-resistant Acinetobacter baumannii strains collected countrywide from hospital intensive care units (ICUs) in China. Emerg Microbes Infect 11: 1730-1741. doi: 10.1080/22221751.2022.2093134.
21. Moulana Z, Babazadeh A, Eslamdost Z, Shokri M, Ebrahimpour S (2020) Phenotypic and genotypic detection of metallo-beta-lactamases in carbapenem resistant Acinetobacter baumannii. Caspian J Intern Med 11: 171.
22. Jiang Y, Ding Y, Wei Y, Jian C, Liu J, Zeng Z (2022) Carbapenem-resistant Acinetobacter baumannii: a challenge in the intensive care unit. Front Microbiol 13: 1045206. doi: 10.3389/fmicb.2022.1045206.
23. Han L, Lei J, Xu J, Han S (2017) blaoxa-23-like and blatem rather than blaoxa-51-like contributed to a high level of carbapenem resistance in Acinetobacter baumannii strains from a teaching hospital in Xi'an, China. Medicine (Baltimore) 96: e8965. doi: 10.1097/MD.0000000000008965.
24. Shenkutie AM, Yao MZ, Siu G Kh, Wong BKC, Leung PHM (2020) Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates. Antibiotics (Basel) 9: 817. doi: 10.3390/antibiotics9110817.
25. Kumar S, Anwer R, Azzi A (2021) Virulence potential and treatment options of multidrug-resistant (MDR) Acinetobacter baumannii. Microorganisms 9: 2104. doi: 10.3390/microorganisms9102104.
26. Al-Shamiri MM, Zhang S, Mi P, Liu Y, Xun M, Yang E, Chen Y (2021) Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microb Pathog 155: 104922. doi: 10.1016/j.micpath.2021.104922.
27. Aliramezani A, Douraghi M, Hajihasani A, Mohammadzadeh M, Rahbar M (2016) Clonal relatedness and biofilm formation of OXA-23-producing carbapenem resistant Acinetobacter baumannii isolates from hospital environment. Microb Pathog 99: 204-208. doi: 10.1016/j.micpath.2016.08.034.
28. Zhang Y, Fan B, Luo Y, Tao Z, Nie Y, Wang Y, Gu D (2021) Comparative analysis of carbapenemases, RND family efflux pumps and biofilm formation potential among Acinetobacter baumannii strains with different carbapenem susceptibility. BMC Infect Dis 21: 1-7. doi: 10.1186/s12879-021-06529-2.
29. Franca RO, PS Costa, GL Milanez, MRQ Bomfim, R Goncalves, LM Farias, V Nobre, SG Santos (2018) Molecular association of pathogenicity and resistance to multiple antimicrobials in Acinetobacter baumannii strains recovered from patients with diverse infectious diseases. J Bras Patol Med Lab 54: 288-295. doi: 10.5935/1676-2444.20180049.

Corresponding author

Dr. Saba Riaz

Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
Tel: +92-336-4208516
Fax: +92 4235952855
Email: saba.mmg@pu.edu.pk
Conflict of interests: No conflict of interests is declared.

[^0]: *. Correlation is significant at the 0.05 level (2-tailed). ${ }^{* *}$. Correlation is significant at the 0.01 level (2-tailed). AMR: antmicrobial resistant genes.

