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Abstract 
Introduction: This study aimed to find the lipid metabolism-associated biomarkers in geriatric patients with sepsis. 
Methodology: The gene expression profiles of specimens from geriatric patients with sepsis were retrieved from the Gene Expression Omnibus 
database. Differentially expressed genes were obtained via “limma” R package, and modules and genes highly associated with geriatric patients 
with sepsis were screened via “WGCNA” R package. The study also involved conducting enrichment analyses using Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes, as well as analyzing protein-protein interaction networks. The receiver operating characteristic curves 
were employed to determine the diagnostic values of hub genes. 
Results: A total of 73 differentially expressed lipid metabolism-related genes (DELRGs) were retained from the 1,317 differentially expressed 
genes, 8,335 module genes, and 1,045 lipid metabolism-related genes. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
results showed that DELRGs were mostly related to lipid metabolism. We identified ten hub genes from the protein-protein interaction network 
of DELRGs. The result of receiver operating characteristic validation indicated that seven hub genes (PPARG, ACSL1, IRS2, PLA2G4A, 
ALOX5, SPTLC1, and JAK2) worked as the biomarkers of geriatric patients with sepsis. The prognostic nomogram suggested that the set of 
seven hub genes can be utilized to evaluate the mortality risk.  
Conclusions: We screened seven lipid metabolism-related hub genes with diagnostic values. These molecules may exert a pivotal influence on 
the progression of sepsis in geriatric patients, as potential biomarkers and therapeutic targets. 
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Introduction 

Sepsis is a serious pathological state marked by a 
dysregulated response of hosts to an infection, resulting 
in organ dysfunction. It is often caused by bacterial, 
fungal, or viral infections. The common pathogens 
causing sepsis include Escherichia coli, Staphylococcus 
aureus, and Streptococcus [1]. Sepsis has been 
recognized as a major public health concern worldwide 
owing to the elevated rates of mortality and morbidity 
[2]. In the aging population, the incidence and mortality 
rates of sepsis are particularly high [3]. These 
phenomena are attributable to various factors, including 
pre-existing comorbidities, reduced functional reserves, 
and immune system impairment [4]. Furthermore, 
geriatric patients often do not manifest the typical signs. 
Therefore, the timely identification of geriatric patients 
with increased susceptibility to the adverse outcomes of 
sepsis and the use of highly sensitive and specific 

diagnostic markers can help perform appropriate 
treatment and possibly improve the outcomes. 

The pathogenesis of sepsis involves several 
mechanisms, including endoplasmic reticulum stress, 
dysregulated inflammation, impaired immunity, 
impaired autophagy, coagulation derangement, 
abnormalities in the neuroendocrine-immune axis, and 
mitochondrial dysfunction [5]. However, lipoproteins 
have also been identified as significant factors in the 
disease process [6]. High-density lipoprotein and low-
density lipoprotein cholesterol play vital roles in sepsis, 
such as clearing bacterial toxins, preventing excessive 
inflammatory cell migration, protecting endothelial 
cells, and aiding in steroid synthesis. Previous studies 
have demonstrated an association between lower lipid 
levels and worse outcomes during sepsis [7-9].  

Until now, the changes in lipid metabolism-related 
gene expression, especially those in the geriatric 
population, remain largely unknown. Aging has been 
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associated with alterations in lipid metabolism, and 
interventions targeting lipid metabolism influence age-
related diseases in various models [10]. Therefore, we 
conducted this study to find the gene markers related to 
lipid metabolism in geriatric patients with sepsis. 

 
Methodology 
Data source 

We obtained the clinical information and gene 
expression profile data of septic elderly patients from 
the Gene Expression Omnibus database. All data were 
obtained from public databases and therefore did not 
require ethical approval. The GSE95233 dataset 
(GPL570 platform) was used as a training set, including 
blood samples from the sepsis patients aged ≥ 60 on day 
1 after shock (n = 31) and healthy volunteers aged ≥ 60 
(n = 8). The GSE112100 dataset (GPL17586 platform) 
was used as a validation set, including urine samples 
from the sepsis patients aged ≥ 60 on septic day 1 (n = 
83) and control samples aged ≥ 60 undergoing vascular 
surgery (n = 29). The 1,045 lipid metabolism-related 
genes were from the study of Li et al. [11]. 

 
Identification of differentially expressed genes (DEGs) 
on geriatric patients with sepsis 

The mRNA expression data of the training set were 
subjected to normalization and base-2 logarithm 
conversion by the “limma” package in R [12] The 
expression values were transformed to obtain DEGs, 
and genes were ranked based on their log2fold-change 
(logFC) values. The criterion for screening DEGs was 
that the adjusted p value (adj. p) < 0.05 and |logFC| > 1. 

 
Identification of significant modules related to 
geriatric patients with sepsis using WGCNA 

The “WGCNA” package [13] was utilized to build 
a co-expression network for the training set. First, we 
performed a cluster analysis to identify outliers and then 
computed the Pearson correlation coefficient matrices 
for pair-wise gene comparisons. We chose a suitable 
soft threshold power (β) by the pickSoftThreshold 
function to ensure a scale-free network. The power 
function was utilized to construct the adjacency matrix, 
followed by the construction of the topological overlap 
matrix using the adjacency function. Finally, the genes 
were grouped into modules based on their expression 
similarities, using the dynamic tree-cutting method and 
a dissimilarity measure computed from the topological 
overlap matrix. 

 
Functional enrichment of differentially expressed lipid 
metabolism-related genes (DELRGs) 

The overlapping genes from the DEGs, module 
genes, and lipid metabolism-related genes were used as 
DELRGs of geriatric patients with sepsis. To reveal the 
functions of DELRGs, we implemented Gene Ontology 
(GO) annotation and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses 
through the “clusterProfiler” package in R [14]. GO 
enrichment analysis was performed on three domains: 
biological processes (BP), cell component (CC), and 
molecular function (MF). Statistical significance was 
set at an adj. A p value of less than 0.05. 

 
Construction of protein-protein interaction (PPI) 
network and identification of hub genes 

We created a PPI network for DELRGs with the 
Search Tool for the Retrieval of Interacting Genes 
online database [15], and then imported it into 
Cytoscape. The CytoHubba plug-in of Cytoscape [16] 
was utilized to acquire hub genes in these DELRGs. 

Figure 1. Identification of DEGs in geriatric patients with sepsis. (A) Volcano map of DEGs. (B) Heatmap of DEGs. DEGs: differentially 
expressed gene. 
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The top ten genes were acquired by the Maximal Clique 
Centrality (MCC) algorithm and chosen as the hub 
genes for subsequent research. 

 
Receiver operating characteristic (ROC) analysis of 
hub genes 

The ROC curves were plotted to detect the 
biomarkers with high sensitivity and specificity for 
geriatric patients with sepsis diagnosis. The area under 
curve (AUC) of each hub gene was computed using the 
“pROC” package in R [17]. An AUC greater than 0.7 
was considered effective gene discrimination. With the 
help of “corrplot” package [18], we drew the correlation 

map which showed the expression correlation values 
between hub genes. 

 
Drug-hub gene interaction 

Promising drug targets were identified based on the 
hub genes using the Drug-Gene Interaction Database 
[19] for treating geriatric patients. We utilized the 
Cytoscape software to build an interaction network 
linking the identified drugs with the hub genes. 

 
Nomogram 

We implemented logistic regression analysis to 
assess the link between hub genes and the prognosis of 
geriatric patients with sepsis. The prognostic 

Figure 2. Weighted co-expression network construction and identification of key modules. (A and B) No outliers in the sample. (C) Setting 
to β 5 created a scale-free network. (D) Heatmap of cluster tree. (E) Heat map of correlation. 
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nomogram was obtained, and its predictive accuracy 
was assessed using calibration curves. 

 
Results 
Identification of DEGs in geriatric patients with sepsis 

After data preprocessing and gene differential 
expression analysis, 1,317 DEGs were obtained, with 
788 genes significantly up-regulated and 529 genes 
down-regulated in geriatric patients with sepsis (Figure 
1A). Figure 1B displays the cluster heatmap of the top 
20 up-regulated and top 20 down-regulated DEGs with 
logFC. 

 
Weighted co-expression network construction and 
identification of key modules 

We employed WGCNA to build a network based on 
the expression matrix of all genes from the samples of 
geriatric patients with sepsis. To assess the data quality, 
we implemented cluster analysis and determined that all 
39 samples were within the cut-off value, and no 
outliers were detectable (Figure 2A and B). A scale-free 
network was established by setting β to 5, independence 
degree to 0.85, and mean connectivity to near 0 (Figure 
2C). The genes with similar expression patterns were 

grouped into seven co-expression modules: black, blue, 
brown, green, red, turquoise, and yellow, excluding the 
grey module cluster to which it was assigned (Figure 
2D). The eigengenes of the blue module exhibited a 
robust positive correlation with geriatric patients with 
sepsis (cor = 0.86, p = 1e-11), whereas those of the 
brown showed a strong negative correlation with 
geriatric patients with sepsis (cor = -0.85, p = 3e-11) 
(Figure 2E). Therefore, the blue and brown modules 
were used for the next analysis. 

 
Identification and functional enrichment of DELRGs 

The 73 overlapping genes from the DEGs, module 
genes, and lipid metabolism-related genes were 
retained as DELRGs for subsequent analysis (Figure 
3A). To gain a more comprehensive understanding of 
the biological roles of these DELRGs, we utilized 
“clusterProfiler” package in R to implement GO 
annotation and KEGG pathway enrichment analyses. 
Figure 3B and C show that DELRGs are enriched in the 
lipid metabolism-related terms, such as “fatty acid 
metabolic process (BP)”, “phospholipid metabolic 
process (BP),” “nuclear envelope (CC),” “organelle 
outer membrane (CC),” “sterol binding (MF),” and 

Figure 3. Identification and functional enrichment of DELRGs. (A) Venn plot of DELRGs. (B and C) GO analysis of DELRGs. (D and E) 
KEGG analysis of DELRGs. DELRGs: differentially expressed lipid metabolism-related genes; GO: Gene Ontology; KEGG: Kyoto 
Encyclopedia of Genes and Genomes. 
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“steroid binding (MF)”. For KEGG enrichment 
analysis, the signaling pathways with strong association 
were lipid metabolism-related pathways, such as 
“adipocytokine signaling pathway” and 
“glycerophospholipid metabolism” (Figure 3D and E). 

 
PPI network establishment and hub gene identification 

DELRGs were analyzed to generate a PPI network 
by the Search Tool for the Retrieval of Interacting 
Genes online database (Figure 4A). The top ten hub 
genes were identified from the PPI network with the 
MCC algorithm in the CytoHubba plug-in of Cytoscape 
software (Figure 4B). Based on their MCC algorithm 
scores, the top ten hub genes were ranked, i.e., PPARG, 
ABCA1, ACSL1, SMARCD3, IRS2, PLA2G4A, 
LPIN1, ALOX5, SPTLC1, and JAK2. 

 
Expression and diagnostic value validation of hub 
genes 

In the training set GSE95233, PPARG, ABCA1, 
ACSL1, SMARCD3, IRS2, PLA2G4A, ALOX5, 
SPTLC1 and JAK2 were up-regulated and LPIN1 was 
down-regulated in geriatric patients with sepsis (Figure 
5A). All the ten hub genes showed the AUC values of 
> 0.9 (Figure 5B). Furthermore, the validation set 
GSE112100 exhibited significant differences in the 
expressions of 8 hub genes between the two groups, i.e., 

PPARG, ABCA1, ACSL1, IRS2, PLA2G4A, ALOX5, 
SPTLC1, and JAK2, which had the same expression 
trend in training and validation sets (Figure 5C). The 
AUCs of PPARG, ACSL1, IRS2, PLA2G4A, ALOX5, 
SPTLC1, and JAK2 were greater than 0.7 (Figure 5D). 
Seven hub genes (PPARG, ACSL1, IRS2, PLA2G4A, 
ALOX5, SPTLC1, and JAK2) were successfully 
validated according to the results of gene expression 
and ROC curve. All the seven hub genes exhibited a 
positive correlation with one another (p < 0.05), and 
ACSL1 and ALOX5 had the highest correlation (cor = 
0.88) (Figure 5E). 

 
Potential drugs identification of hub genes 

In the Drug-Gene Interaction Database, we 
identified 220 pairs of drug-gene interactions involving 
212 drugs and five hub genes (PPARG, JAK2, ALOX5, 
PLA2G4A, and IRS2) (Figure 6). PPARG had the 
highest degree and was targeted by 121 small molecules 
or drugs, followed by JAK2 (degree = 62), ALOX5 
(degree = 25), PLA2G4A (degree = 9), and IRS2 
(degree = 3). The majority of potential drugs may 
interact with the hub genes in unknown ways or as 
inhibitors, agonists, or modulators. This result may help 
develop new targets for treating geriatric patients with 
sepsis. 

 

Figure 4. PPI network establishment and hub gene identification. (A) PPI network of DELRGs. (B) PPI network of the top ten hub genes. 
DELRGs: differentially expressed lipid metabolism-related genes; PPI: protein-protein interaction. 



Bian et al. – Lipid metabolism-related genes in geriatric sepsis     J Infect Dev Ctries 2024; 18(10):1502-1511. 

1507 

  Figure 5. Expression and diagnostic value validation of hub genes. (A and B) Boxplots of hub genes expression in the training and validation 
sets. (C and D) ROC curves of hub genes in the training and validation sets. (E) Heatmap of correlation of hub genes. ROC, receiver operating 
characteristic. 

Figure 6. Potential drugs identification of hub genes. 
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Identification of prognostic genes 
Using the logistic regression coefficient, we 

established a nomogram. The high expression levels of 
PPARG, PLA2G4A, IRS2, SPTLC1, and JAK2, along 
with the low expression levels of ACSL1 and ALOX5, 
were linked to an increased risk of mortality in geriatric 
patients with sepsis (Figure 7A). The calibration curve 
demonstrated the satisfactory performance of the 
nomogram versus the ideal model (Figure 7B). Hence, 
the seven hub genes may work as valuable predictors of 
mortality risk in geriatric patients with sepsis. 

 
Discussion 

The timely identification of geriatric sepsis in high-
risk individuals is crucial for effective treatment and 
favorable outcomes. This study aimed to elucidate the 
potential lipid metabolism-related biomarkers in 
geriatric septic patients by subjecting sepsis and lipid 
metabolism-related gene data to bioinformatics 
analysis. We identified 73 DELRGs, and further GO 
and KEGG results demonstrated their contribution to 
lipid metabolism. Furthermore, we identified ten hub 
genes from the PPI network of DELRGs. The result of 
ROC validation indicated that seven hub genes 
(PPARG, ACSL1, IRS2, PLA2G4A, ALOX5, 
SPTLC1, and JAK2) were the biomarkers of geriatric 
patients with sepsis. The prognostic nomogram 
suggested that the seven hub genes had the potential to 
predict the mortality risk in geriatric septic patients. 

We found significant differences in the expressions 
of mRNAs related to lipid metabolism between 
geriatric patients with sepsis and control samples. GO 
enrichment analysis revealed DELRGs were related to 
lipid metabolisms, such as fatty acid metabolic process, 
phospholipid metabolic process, glycerolipid metabolic 

process, and lipid localization. The enrichment of 
DELRGs in the adipocytokine signaling pathway and 
other signaling pathways related to lipid metabolism 
was also revealed by KEGG enrichment analysis. These 
biological processes and signaling pathways may be 
crucial in the pathological process of geriatric septic 
patients. 

To explore the key lipid metabolism-related genes 
affecting geriatric patients with sepsis, we identified 10 
hub genes by PPI network and evaluated and verified 
the diagnostic performance of these genes using ROC 
curves, among which seven genes (PPARG, ACSL1, 
IRS2, PLA2G4A, ALOX5, SPTLC1, and JAK2) had 
high diagnostic values. The results of prognostic 
nomogram and calibration curve showed that these 
genes had the potential to predict the mortality risk in 
geriatric septic patients. 

PPARG is expressed in various immune cells and 
has potent anti-inflammatory effects. These effects 
include modulation of neutrophil migration and 
activation, enhancement of macrophage phagocytosis, 
regulation of inflammatory mediator production, and 
activation of oxygen/nitrogen species [20-22]. In septic 
patients, a decrease in the level of PPARG expression 
has been observed in mononuclear cells [23]. 
Additionally, the murine models of sepsis have 
decreased PPARG expression, particularly in the lungs 
[24]. In both in vivo and in vitro studies, PPARG 
agonists have been verified to suppress sepsis-triggered 
inflammatory responses [25], acute lung injury [26], 
and inflammation [27]. This suppression enhances the 
host’s ability to eliminate pathogenic bacteria and to 
improve the prognosis. We herein found that PPARG 
had the highest degree and was targeted by 121 small 

Figure 7. Identification of hub genes. (A) Nomogram of hub genes. (B) Calibration curve of nomogram. 
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molecules or drugs, suggesting that PPARG may be a 
promising target for treating geriatric septic patients. 

The inhibition of fatty acid β-oxidation by the 
PPARG pathway is associated with high ACSL1 gene 
expression, raising the triglyceride level [28]. Several 
independent datasets have verified a notable increase in 
the ACSL1 transcript abundance during sepsis [29]. 
There is a close correlation between ACSL1 expression 
and both CHREBP in hyperglycemic settings and NF-
κB in the presence of inflammation [30]. The exposure 
of bone marrow-derived macrophages to 
lipopolysaccharide to induce inflammation led to an 
increase in ACSL1 mRNA expression owing to the 
activation of transcription factor NF-κB, as 
demonstrated by Peña et al. [31]. Additionally, 
lipopolysaccharide treatment results in an increase in 
ACSL1 protein levels which is localized to the 
membrane, facilitating its function. JAK2 is a 
downstream effector of IL6, a pleiotropic cytokine 
produced by various immune cells to initiate 
inflammation and immune responses. The role of JAK2 
in modulating innate immune responses during sepsis 
remains elusive, but it has recently been implicated in 
activating NF-κB in response to bacterial endotoxin. 
IRS2 functions as a pivotal regulator of insulin and 
insulin growth factor signaling. In addition, it plays a 
crucial role in mediating T helper 2 signaling and 
macrophage activation via type I interleukin-4 receptor 
[32]. PLA2G4A is an enzyme that catalyzes the 
hydrolysis of membrane phospholipids to release 
arachidonic acid, a precursor for the biosynthesis of 
various eicosanoids such as prostaglandins and 
leukotrienes. These lipid mediators are involved in 
regulating inflammatory responses, hemodynamics, 
and various intracellular pathways that participate in 
sepsis [33]. ALOX5 belongs to the lipoxygenase family 
that converts arachidonic acid into leukotrienes, potent 
mediators involved in various inflammatory and 
allergic conditions [34]. SPTLC1 is a crucial enzyme in 
sphingolipid biosynthesis, which converts L-serine and 
palmitoyl-CoA to 3-oxosphinganine with pyridoxal 5'-
phosphate. Sphingolipids are pivotal components of 
cell membranes and bioactive molecules that regulate 
cell growth, differentiation, and death, and their 
metabolism may contribute to sepsis pathophysiology 
[35]. All these genes are critical in lipid metabolism and 
may also exert a vital effect on inflammatory responses, 
making them potential targets for the progression of 
sepsis. 

For sepsis, there is no specific immunotherapy. 
Despite developments in the prevention and treatment 
of sepsis, the morbidity and mortality rates remain high. 

Based on the diagnostic genes, we screened the 
corresponding drugs. Many pharmacological agents 
have the potential to interact with hub genes either 
through unknown mechanisms or by acting as 
inhibitors, agonists, or modulators. For instance, aspirin 
is a non-selective inhibitor of cyclooxygenase and both 
act on PLA2G4A and IRS2. A meta-analysis of 
individual patient data from published observational 
studies examined the relationship between the pre-onset 
use of aspirin and mortality in hospitalized patients with 
sepsis [36]. In-vitro, animal, and human experiments 
have demonstrated several possible mechanisms, 
including the suppression of tumor necrosis factors, 
resolution of lipid mediators of inflammation, and 
inhibition of platelet activation [37]. 

Nevertheless, our study has limitations. Firstly, the 
gene data were sourced from a public database, and the 
sample size was relatively small, which may introduce 
bias into the results. Secondly, the lack of molecular 
validation experiments means that larger-scale clinical 
samples are required to confirm our findings. Thirdly, 
additional investigation is necessary to elucidate the 
mechanism of key genes associated with the 
pathogenesis and progression of sepsis in geriatric 
patients. 

 
Conclusions 

In conclusion, seven lipid metabolism-related hub 
genes may have important implications in 
understanding the sepsis pathogenesis in geriatric 
patients and have potential diagnostic and therapeutic 
applications. Further investigation is needed to 
elucidate the functions and mechanisms of these genes. 
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