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Abstract 
Introduction: Multidrug-resistant (MDR) bacteria like Proteus species have led to more prolonged hospitalizations, fewer care choices, higher 
treatment costs, and even death. The present study aims to evaluate the prevalence of MDR Proteus species in clinical samples and to suggest 
the best therapeutic options for the MDR Proteus species. 
Methodology: Clinical samples were collected randomly from five hospitals in Golestan Province, Iran, from February 2017 to July 2019. Disk 
diffusion on Mueller–Hinton agar plates were used to perform antibiotic susceptibility testing (ASTs). By using a double-disc synergy test 
(DDST), isolates resistant to one of the third-generation cephalosporins were examined for phenotypic extended-spectrum β-lactamase (ESBL) 
development. A combined double disk synergy test (CDDST) was used to identify MBL-producing isolates. 
Results: 61 Proteus isolates, including P. Mirabilis 44/61 (77.04%), P. vulgaris 7/61 (11.47%), P. hauseri 5/61 (8.19%), and P. penneri 2/61 
(3.27%) were collected. Most of the isolates were obtained from urine samples. P. hauseri isolates were more frequent in females. Resistance 
to tetracycline and nitrofurantoin antibiotics was observed in most Proteus isolates. P. penneri isolates were all resistant to antibiotics. ESBL 
production was observed in five ceftazidime-resistant isolates (p < 0.05). 
Conclusions: Cefepime and imipenem were found to have the lowest occurrence of antibiotic resistance among Proteus species, confirming 
that cefepime and imipenem can be used to treat Proteus infections. 
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Introduction 

Antibiotics have saved many lives and alleviated 
the suffering of many people worldwide. Due to the rise 
and growing antibiotic-resistant bacteria, scientists 
hope for the treatment of microbial diseases has faded 
quickly [1-3]. Multidrug-resistant (MDR) bacterial 
infections have led to more prolonged hospitalizations, 
fewer care choices, higher treatment costs, and even 
death. Hence, continuous monitoring of microbial drug 
resistance is crucial [4]. MDR bacteria are resistant to 
at least three different antibiotic families [5]. It is 
crucial to choose the appropriate antibiotic and 
determine the pattern of bacterial susceptibility to 
improve the effectiveness of treatment against 
infections caused by MDR bacteria [6].  

Another form of antibiotic resistance was found in 
Gram-negative bacteria, which were resistant to 
extended-spectrum beta-lactamase (ESBL) [7,8]. 
ESBLs are β-lactamase hydrolyzing extended-spectrum 
cephalosporins, penicillin, and monobactams but not 
cephamycin and carbapenems. ESBLs are inhibited by 

β-lactamase inhibitors, including clavulanic acid, 
sulbactam, and tazobactam [8-10]. The Proteus species 
belong to the order Enterobacterales and the 
Morganellaceae family, Gram-negative bacteria [11-
13]. These organisms are found in the natural flora of 
humans' intestinal tracts and the soil and water, where 
their presence is thought to be due to fecal 
contamination.  

Proteus mirabilis (P. mirabilis), Proteus vulgaris 
(P. vulgaris), Proteus penneri (P. penneri), Proteus 
hauseri (P. hauseri), and three other unidentified 
genomospecies 4, 5, and 6 are currently divided into 
five specific genera [14-16]. The urease-producing P. 
mirabilis is well-known for its ability to differentiate 
into elongated swarm cells and a distinctive bull's-eye 
pattern of motility on agar plates [14,17]. This 
bacterium causes wounds, gastrointestinal tract, and 
urinary tract infections, but it is best known for 
infections of the catheterized urinary tract, also known 
as catheter-associated urinary tract infections (CAUTI). 
P. mirabilis can induce respiratory tract infections, 
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bacteremia, meningitis, cystitis, acute pyelonephritis, 
and renal calculi [18,19]. Furthermore, proteus 
infection has been linked to autoimmune disorders, 
including rheumatoid arthritis [18]. The pathogenicity 
of Proteus species requires several virulence factors, 
including the mannose-resistant Proteus-like (MR/P) 
fimbria, mannose-resistant Klebsiella-like 
hemagglutinin (MR/K), P. mirabilis fimbriae (PMF) 
[18–20], and the urease enzyme [21]. 

In recent decades, resistance to antibiotics has 
increased significantly in Iran. This alarming increase 
has caused various researchers to conduct studies to 
investigate and identify antibiotic resistance [22]. 
According to the review of three studies conducted in 
the last few years in Iran, the most resistance in Proteus 
isolates was against the antibiotic cotrimoxazole. Also, 
the results of these studies showed high resistance to 
nitrofurantoin and ampicillin [23–27]. 

Due to the lack of knowledge of the antibiotic 
resistance and ESBL patterns of Proteus species and 
increased evidence of drug resistance to bacterial 
infection, it was aimed to evaluate the abundance 
distribution of MDR Proteus species from clinical 
samples. In addition, the best possible therapeutic 
regimen was suggested for the MDR Proteus species. 

 
Methodology 
Sample size and identification of Proteus species  

This cross-sectional study was performed in the 
Department of Microbiology, Golestan University of 
Medical Science, Gorgan, Iran. The study was approved 
by the Ethics committee of Golestan University of 
Medical Sciences, Iran (ethical code: 
IR.GOUMS.REC.1397.194). All clinical samples were 
collected randomly with no-repeat from five hospitals, 
namely A, B, C, D, and F in Golestan Province, Iran, 
from February 2017 to July 2019. 

The isolates were belonged to various sources, 
including urogenital, abscess, and wound swabs. All 
specimens were cultured on nonselective blood agar 
media (Merck, Darmstadt, Germany). Proteus species 
were identified by standard microbiological and 
biochemical methods, such as colony morphology and 
Gram staining, oxidase, catalase, swarming motility, 
indole, citrate, maltose, saccharose fermentation, 
urease, bile esculin, and ornithine decarboxylase. 
Positive Proteus isolates were stored in tryptic soy 
broth stocks (Merck, Darmstadt, Germany) with 15% 
glycerol at −70 °C. The isolates were further confirmed 
by 16 sRNA gene amplification as described before 
[28]. 

 

Antimicrobial susceptibility test  
Antibiotic susceptibility tests (ASTs) of all isolates 

were performed by disk diffusion method on  Mueller–
Hinton agar plates (Merck, Darmstadt, Germany), 
according to the guidelines of the Clinical and 
Laboratory  Standards Institute (CLSI) [29]. The 
antibiotics, including amikacin (30 μg), cefotaxime (30 
μg), ceftazidime (30 μg), ciprofloxacin (5 μg), co-
trimoxazole (25 μg), gentamicin (10 μg), imipenem (10 
μg), nitrofurantoin (30 μg), nalidixic acid (30 μg) 
cefepime (30 μg), ceftriaxone (30 μg) and norfloxacin 
(10 μg) (Mast Co, Merseyside, UK) were used in disc 
diffusion test. Inhibition zone (IZ) diameters (mm) of 
each  antibiotic disc on the plates were measured after 
24 hours of incubation. The isolates were classified into 
three categories: resistant, intermediate, and 
susceptible. E. coli strain ATCC 35218 was used as a 
control. 

 
Phenotypic detection of ESBL production 

Each isolate resistant to one of the third -generation 
cephalosporins (ceftazidime, cefotaxime, and 
ceftriaxone) was tested for phenotypic ESBL 
production. A double-disc synergy test (DDST) was 
used for phenotypic detection of ESBL production. In 
brief, the isolates with 0.5 McFarland standard turbidity 
were cultured on Müller-Hinton agar plates. According 
to CLSI guidelines, ceftazidime (30 μg), cefotaxime (30 
μg), and ceftriaxone (30 μg) discs were placed at a 
distance of 15 mm away from the 
amoxicillin/clavulanic acid (30 μg) that was located in 
the center of the plate at 37 °C for 24 hours. After the 
incubation period, the plates with an IZ diameter > 5 
mm  around the amoxiclav disk compared to 
cephalosporins alone were considered ESBL producing 
isolates [4,24,29,30]. 

 
Phenotypic detection of Metallo-β-lactamase 
producing isolate(s) 

Initial screening for the production of MBL isolates 
was based on carbapenem (imipenem, meropenem) 
resistance. In summary, imipenem-resistant isolates 
were evaluated by   a  combined double‑disk synergy test 
(CDDST   ) according to the CLSI guideline.  To 
determine MBL-producing isolates, a 0.5 McFarland 
turbidity suspension of imipenem-resistant isolates was 
cultured on Müller-Hinton agar medium. In addition, 
two discs of both imipenem and ceftazidime antibiotics 
were placed on the surface of the inoculated plate.  
Discs were incubated at 37 °C for 24 hours by adding 8 
µL of EDTA solution. Increasing the IZ around the 
discs (Merck, Darmstadt, Germany) compared to the 
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initial state. The discs with IZ ≥ 8 mm were considered 
MBL producing isolates [29–31]. 

 
Statistical analysis 

The data analysis was performed by SPSS software 
version 16.0 (SPSS Inc., Chicago, IL, USA). 
Categorical and continuous quantitative variables were 
analyzed by Pearson’s Chi‑squared and independent 
samples t‑tests. A p ≤ 0.05 was considered significant 
with a 95% confidence interval (CI). 

 
Results 
Characterization of Proteus isolates 

A total of 61 Proteus isolates were collected. The 
most prevalent species have belonged to P. Mirabilis 
44/61 (77.04%), P. vulgaris 7/61 (11.47%), P. hauseri 
5/61 (8.19%), and P. penneri 2/61 (3.27%). 36/61 
(59%) isolates were recovered from females, and the 
remaining 25/61 (41%) were from males. The mean 
patient was 34 years (1 to 74 years old).  

P. hauseri was more common in older patients 
(mean 49 years) (Table 1). P. penneri, P. hauseri 
isolates, P. vulgaris (86%), and P. mirabilis (80.85%) 
species were isolated from urine. P. hauseri isolates 
were more frequent in females (4/5). Interestingly, P. 
hauseri and P. penneri isolate was commonly detected 
from outpatients, while 57% of P.vulgaris isolated were 
inpatients (Table 1). 

 
Antibiotic susceptibility test  

As shown in Table 2,  resistance to tetracycline and 
nitrofurantoin antibiotics was observed in the most 
Proteus isolates.  All P. mirabilis isolates were resistant 

to nitrofurantoin. Only one isolate of P. mirabilis was 
sensitive to tetracycline.   Surprisingly, none of the P. 
penneri isolates were resistant to the four families of 
antibiotics. Accordingly, P. penneri species were more 
sensitive to antibiotics among the Proteus species. 
Unlike P. penneri isolates, antibiotic resistance was 
more common among P. vulgaris isolates, but in 
general, no significant relationship was observed 
between antibiotic resistance and type of Proteus 
species (p > 0.05). Further information is provided in 
Table 2. 

 
ESBL and Metallo-β-lactamase 

From 16 isolates resistant to ceftazidime, 
ceftriaxone, or both, 5/16 (31.25%) produced ESBL, of 
which four isolates were P. mirabilis, and one isolate 
was P. hauseri (Figure 1). Three isolates producing 
ESBL were isolated from urine, and the other two 
isolates were isolated from wounds and trachea. No 
metallo-β-lactamase producing isolates were observed 
in imipenem-resistant cases.  However, the frequency of 
resistance to imipenem, gentamicin, ceftazidime, 
ciprofloxacin, chloramphenicol, cefepime, cefotaxime, 
and ampicillin was higher in ESBL-producing isolates. 
A significant correlation was found between ESBL 
production and resistance to ciprofloxacin, ampicillin, 
cefepime, and cefotaxime (p < 0.001).  

 
Discussion 

Proteus spp infects humans due to its numerous 
virulence factors, such as the enzyme urease, flagella, 
fimbriae, biofilm formation, and produce toxins such as 
hemolysin and mirabilysin [19]. Therefore, assessments 

Table 1. The information of Proteus isolates from wards, sources, and patients. 
Species Ward Mean age Gender Source 

Urology Outpatient ICU Burn Male Female Urine Wound Abscess Tracheal Vaginal Total 
P. mirabilis 0 38 8 1 31.5 ± 16.72 17 30 38 3 3 2 1 47 
P. vulgaris 3 3 0 1 35.5 ± 16 3 4 6 1 0 0 0 7 
P. hauseri 0 5 0 0 49 ± 14.94 1 4 5 0 0 0 0 5 
P. penneri 0 2 0 0 45 ± 6 1 1 2 0 0 0 0 2 

Total 3 48 8 2 34 ± 17.1 22 39 51 4 3 2 1 61 
 

Table 2. Antibiotic susceptibility of clinical isolates of Proteus species. 
Sig. Total, n (%) P. penneri, n (%) P. hauseri, n (%) P. vulgaris, n (%) P. mirabilis, n (%) Antibiotics 
0.20 13 (21.31) 2 (40.00) 0 (0.00) 0 (0.00) 11 (23.40) Ampicillin 
0.20 10 (16.40) 0 (0.00) 0 (0.00) 0 (0.00) 10 (21.27) Cefoxitin 
0.20 18 (29.50) 2 (40.00) 0 (0.00) 4 (57.10) 12 (25.53) Cefazolin 
0.20 12 (19.67) 2 (40.00) 0 (0.00) 2 (28.60) 8 (17.02) Ceftazidime 
0.20 12 (19.67) 3 (60.00) 0 (0.00) 2 (28.60) 7 (14.89) Cefotaxime 
0.50 8 (13.11) 1 (20.00) 0 (0.00) 2 (28.60) 5 (10.63) Cefepime 
0.40 9 (14.75) 0 (0.00) 0 (0.00) 2 (28.60) 7 (14.89) Imipenem 
0.60 9 (14.75) 0 (0.00) 0 (0.00) 1 (14.30) 8 (17.02) Gentamicin 
0.60 9 (14.75) 1 (20.00) 0 (0.00) 2 (28.60) 6 (12.76) Ciprofloxacin 
0.60 18 (29.50) 1 (20.00) 0 (0.00) 2 (28.60) 15 (31.93) Cotrimoxazole 
0.50 23 (37.70) 2 (40.00) 0 (0.00) 3 (42.90) 18 (38.29) Chloramphenicol 
0.001 57 (93.44) 3 (60.00) 1 (50.00) 6 (85.80) 47 (100) Nitrofurantoin 
0.90 60 (98.36) 5 (100.00) 2 (100.00) 7 (100.00) 46 (97.87) Tetracycline 
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of antibiotic resistance and ESBL patterns of Proteus 
species is crucial for suggesting correct antibiotic 
regimen. Proteus is a known bacterial genus that causes 
urinary tract infections and is more likely to be isolated 
from urine than other sources [18,19].  Most of the 
Proteus species were isolated from urinary tract 
samples in the present study. This finding was 
consistent with the previous reports [30,32,33].  

As a result, P. mirabilis was the most prevalent 
isolate, followed by P. vulgaris, P. Hauseri, and P. 
penneri.   Similar results are also reported from Iran 
[30]. One of the exciting findings was the identification 
and isolation of P. hauser by biochemical diagnosis. 
The bacterium was differentiated from P. vulgaris in 
2000 by doctor Hauser. P. hauseri is indole positive but 
negative for salicin and esculin tests. These tests are the 
distinguishing feature of P. hauseri from P. vulgaris. 
Due to the similarity to P. vulgaris, accurate statistics 
of P. hauseri frequency in the world have not been 
reported. 

Women are more prone to urinary tract infections 
because they have a shorter bladder outlet than men and 
a shorter distance to the anus. As expected, most 
isolates were obtained from women, which has been the 
subject of many studies in other parts of the world and 
Iran [34–36].  Moreover, most Proteus isolates were 
found in hospitalized patients, while P. penneri and P. 
hauseri isolates and a large portion of P. mirabilis 
isolates were obtained from outpatients. Proteus is an 
opportunistic bacterium, and one of the most critical 
risk factors for infections is an extended hospital stay 
and the use of a catheter [19].  Due to these reasons, the 

prevalence of this bacterium was expected to be higher 
in hospitalized patients than in outpatients. 
Accordingly, therapeutic approaches in these patients 
are crucial. 

Since Proteus species are inherently resistant to 
nitrofurantoin and tetracycline [37,38], the results 
showed a high degree of resistance to these antibiotics 
(91% and 98% to nitrofurantoin and tetracycline, 
respectively). Unlike other Proteus species, P. penneri 
isolates were more sensitive to nitrofurantoin. 
Antibiotic resistance has been seen in various forms 
among Gram-negative bacteria. Resistance to broad-
spectrum β-lactams is one type of resistance that has 
become a global problem among Gram-negative bacilli 
[39]. As a result, ESBL production was detected in only 
8.2% of isolates, falling within the reported range of 0 
to 11.8% for ESBL-producing Proteus isolates 
[24,30,40]. Furthermore, the finding was lower than 
that reported for other parts of the world, such as Japan 
(45.6%), India (48.86%), and Taiwan [32,41,42]. 

Antibiotic resistance was detected among ESBL 
isolates to imipenem, gentamicin, ciprofloxacin, 
cefepime, cefotaxime, chloramphenicol, and 
ampicillin. There was also concurrent resistance 
between ciprofloxacin, ampicillin, cefotaxime, and 
cefepime. Some investigations have found a link 
between ESBL production and ciprofloxacin resistance 
[24].  The ESBL-producing gene could be on a 
chromosome or a plasmid. Many genes conferring 
resistance to aminoglycosides, trimethoprim-
sulfamethoxazole, and fluoroquinolones have been 
found on the plasmid harboring the ESBL gene. The 

Figure 1. ESBL production by Proteus isolates. The figure shows the sensitivity of Proteus isolates to different types of antibiotics. 
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association between the simultaneous existence of these 
genes and being ESBL in Klebsiella was explored in 
one study, and it was found to be statistically 
significant. Another reason for this synchrony could be 
changing the bacterium's outer membrane proteins. 
Mutations at the nan locus in Gram-negative bacteria 
are linked to ciprofloxacin resistance and the presence 
of ESBL enzymes [43-44]. 

 
Conclusions 

In imipenem-sensitive bacteria, metallo β-
lactamase production was not found. This shows that 
imipenem could treat Proteus species that produce 
metallo β-lactamases. Furthermore, cefepime and 
imipenem were found to have the lowest occurrence of 
antibiotic resistance among Proteus species, confirming 
that cefepime and imipenem can be used to treat 
Proteus infections. 
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