Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis
DOI:
https://doi.org/10.3855/jidc.12585Keywords:
COVID-19, Spatial-temporal distribution, Logistic model, SEIRAbstract
Currently, the outbreak of COVID-19 is rapidly spreading especially in Wuhan city, and threatens 14 million people in central China. In the present study we applied the Moran index, a strong statistical tool, to the spatial panel to show that COVID-19 infection is spatially dependent and mainly spread from Hubei Province in Central China to neighbouring areas. Logistic model was employed according to the trend of available data, which shows the difference between Hubei Province and outside of it. We also calculated the reproduction number R0 for the range of [2.23, 2.51] via SEIR model. The measures to reduce or prevent the virus spread should be implemented, and we expect our data-driven modeling analysis providing some insights to identify and prepare for the future virus control.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).