Mutations of domain V in 23S ribosomal RNA of macrolide-resistant Mycoplasma gallisepticum isolates in Egypt
DOI:
https://doi.org/10.3855/jidc.7850Keywords:
M. gallisepticum, broth microdilution, domain V mutations, sequence analysisAbstract
Introduction: Avian mycoplasmas impose a significant economic burden to the poultry industry. In recent years, macrolide-resistant Mycoplasma gallisepticum have occasionally been encountered in Egypt.
Methodology: This study was designed to document the involvement of macrolide-resistant M. gallisepticum in respiratory organs of chickens suffering respiratory problems. Concurrently, an exhaustive molecular characterization of the intrinsic resistance of recovered isolates to macrolides was done.
Results: Of 120 chickens showing respiratory problems, 14 (11.67%) M. gallisepticum were isolated and genetically identified; 8 of them were recovered from air sacs, 4 from lungs, and 2 from tracheas. Broth microdilution of all M. gallisepticum isolates showed various degrees of minimum inhibitory concentrations (MICs) against macrolides: erythromycin (0.25–32 µg/mL), tylosin (0.0625–4 µg/mL), and tiamulin (0.031–2 µg/mL). Nucleotide sequencing of domain V (peptidyl transferase region) of the 23S rRNA gene of macrolide-resistant M. gallisepticum isolates revealed transition mutations at positions 2068 and 2069 (corresponding to 2058 and 2059 in Escherichia coli numbering) in an isolate and at position 2067 (corresponding to 2057 in E. coli numbering) in three isolates as hot spots for macrolide resistance. Surprisingly, a transversion mutation at position 2621 (corresponding to 2611 in E. coli numbering) was reported in one of the recovered isolates as a first report.
Conclusion: Generation of new mutations is evidence for persistence of M. gallisepticum despite macrolide treatment. Periodic surveys to monitor for the possible appearance of resistant strains are recommended.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).