Molecular characterization of resistance mechanisms in Pseudomonas aeruginosa isolates resistant to carbapenems
DOI:
https://doi.org/10.3855/jidc.9501Keywords:
carbapenem resistance, Pseudomonas aeruginosa, carbapenemases, efflux pump, outer membrane proteinAbstract
Introduction: Emergence of carbapenem resistance in Pseudomonas aeruginosa increases the therapeutic dilemma. In this study, we investigated various mechanisms involved in the resistance of P. aeruginosa clinical isolates to carbapenems.
Methodology: P. aeruginosa isolates were isolated from different clinical samples. The antimicrobial susceptibility was evaluated by disc diffusion method. Carbapenemases were detected among carbapenem resistant isolates. Expression level of mexB and oprD was determined by real-time PCR. Molecular relatedness among isolates was detected based on pulse-field gel electrophoresis (PFGE).
Results: Ninety P. aeruginosa isolates were purified from clinical specimens. High levels of resistance to imipenem and meropenem were detected in 16 isolates. PCR analysis of carbapenemases indicated the prevalence of Verona integron-encoded metallo-beta-lactamase (VIM); four isolates produced only VIM enzymes (VIM-1 or VIM-2), while the remaining twelve co-produced both VIM-1 or VIM-2 and NDM enzymes.
Additionally, real-time PCR analysis elucidated high expression levels of mexB in seven of the carbapenem resistant isolates and low expression of oprD in seven isolates.
The identified carbapenem-resistant isolates were clustered into eleven PFGE profiles where clusters E1 and E2 involved isolates exhibiting multiple carbapenemase genes (blaNDM-1, blaVIM-1 and blaVIM-2).
Conclusion: Various mechanisms underlying carbapenem resistance have been detected in our P. aeruginosa cohort of isolates. Emergence of P. aeruginosa as a reservoir of multiple carbapenemases is increasing over time limiting the treatment options to this serious infection. This increases the urgency for infection control practices to reduce the incidence of this infection.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).