Evaluating ginger extract, wild blueberry extract, and polysorbates (PS20, PS80) on Pseudomonas aeruginosa biofilm formation
DOI:
https://doi.org/10.3855/jidc.10098Keywords:
Biofilm, Ginger, Blueberry, Polysorbate, PseudomonasAbstract
Introduction: Pseudomonas aeruginosa is a biofilm forming pathogen that challenges clinical and industrial settings. Many natural products and surfactants have been screened and valued for their anti-biofilm capacity. In this study we assessed the inhibitory effect and molecular mechanism of action of ginger extract (Zingiber officinale Rosc.), wild blueberry extract (Vaccinium angustifolium), and polysorbates (PS20/PS80) on biofilm formation.
Methodology: Ginger and wild blueberry extractions were done using ethanol and distilled water, respectively. Hexane and methanol were used for extracts’ liquid-liquid portioning. LC-HRMS was performed to obtain extract fractions. Efficacy of the crude extracts, fractions, and polysorbates was assessed on P. aeruginosa PAN14 growth and biofilm. Transcription levels of biofilm encoding genes ndvB, pelC, algC and quorum sensing genes lasI, lasR, rhlI, rhlR were evaluated by RT-qPCR.
Results: Extracts and polysorbates concentrations did not affect P. aeruginosa growth. Biofilm assay showed a reduction in biofilm when 5% ginger, 25% wild blueberry extracts, 0.2% PS20, and 0.25% PS80 were added. LC-HRMS analysis of ginger extract showed abundant gingerol in the hexane layer. Wild blueberry chromatograms showed various constituents differing between their peel and pulp, and pulp extracts. RT-qPCR showed decreased transcription levels of exopolysaccharide and quorum sensing genes with a 363.6 folds reduction in ndvB upon treatment with 25% wild blueberry peel and pulp extract.
Conclusion: These results shed light on the mechanism of action of ginger and wild blueberry constituents as well as PS20/80 on P. aeruginosa biofilm formation. Future mouse model experiments are useful to test biofilm inhibition in-vivo.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).