Endosomal Toll-Like Receptors (TLRs) mediate enhancement of IL-17A production triggered by Epstein-Barr virus (EBV) DNA in mice
DOI:
https://doi.org/10.3855/jidc.10074Keywords:
Toll-like receptors, EBV DNA, IL-17, chloroquineAbstract
Introduction: EBV has long-been associated with autoimmune disorders. We have previously demonstrated that EBV DNA increases the production of IL-17A in mice. This property may play a role in the association of EBV with autoimmune diseases. The objective of this study was to elucidate mechanisms through which EBV DNA modulates IL-17A levels in mice.
Methodology: To study the potential role of endosomal receptors in detecting EBV DNA, chloroquine, an endosomal maturation inhibitor, was used to treat mouse peripheral blood mononuclear cells (PBMCs) in the presence or absence of EBV DNA. IL-17A levels were then assessed by ELISA. Subsequently, to determine whether TLR3, 7 or 9 played a role in this pathway, specific inhibitors were used for these TLRs both in mouse PBMCs and in vivo in BALB/c mice treated with the viral DNA; IL-17A levels were then similarly assessed.
Results: IL-17A production was enhanced from mouse PBMCs cultured with EBV DNA; pre-incubation of PBMCs with chloroquine significantly reduced its production. When cells were cultured with EBV DNA and a TLR3, 7 or 9 inhibitor, a significant decrease in IL-17A levels was detected. A similar decrease in the EBV DNA-triggered IL-17A production in mice was observed when animals were treated with the TLR inhibitors.
Conclusion: Endosomal TLRs appear to be involved in recognizing EBV DNA and subsequently triggering IL-17A production in mice. Targeting these receptors in EBV positive subjects with autoimmunity may be useful pending investigations assessing whether they play a similar role in humans.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).