A quite sensitive fluorescent loop-mediated isothermal amplification for rapid detection of respiratory syncytial virus
DOI:
https://doi.org/10.3855/jidc.11549Keywords:
RT-LAMP, RSV, SYTO 9, Sensitivity, Specificity, Clinical diagnosisAbstract
Introduction: Human respiratory syncytial virus (hRSV) is a common respiratory virus closely related to respiratory tract infection (RTI). Rapid and accurate detection of hRSV is urgently needed to reduce the high morbidity and mortality due to hRSV infection.
Methodology: Here, we established a highly sensitive and specific reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of A and B group hRSV simultaneously. The specific primer sets for hRSV A and B groups were designed in the M and M2-2 gene, respectively. SYTO 9 was used as the fluorescent dye for real-time monitoring of the amplification of hRSV RNA without cross reaction between hRSV A and B.
Results: The limit of detection (LOD) of our new method was 281.17 50% tissue culture infective doses (TCID50)/mL for hRSV A and 1.58 TCID50/mL for hRSV B. Using 90 clinical samples, a comparison to traditional RT-PCR was performed to validate this assay. The positivity rate of RT-LAMP and RT-PCR were 67.8% and 55.6%, respectively, and the positivity rate of RT-LAMP was significantly higher than RT-PCR (χ2 test, P < 0.01).
Conclusions: Compared with traditional RT-PCR method, the newly developed fluorescent RT-LAMP combined with well-designed primers and SYTO 9 is quite sensitive, specific, rapid and well applicable to hRSV clinical diagnosis.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).