Rifampicin resistance patterns and dynamics of tuberculosis and drug-resistant tuberculosis in Enugu, South Eastern Nigeria
DOI:
https://doi.org/10.3855/jidc.12736Keywords:
M. tuberculosis, Nigeria, rpoB, Xpert MTB/RIF, numerical simulationAbstract
Introduction: Tuberculosis (TB) continues to be a public health problem globally. The burden is further exacerbated in developing countries like Nigeria, by poor diagnosis, management and treatment, as well as rapid emergence of drug-resistant TB. This study was conducted to evaluate the prevalence of drug-resistant TB, determine the rpoB gene mutation patterns of Mycobacterium tuberculosis (MTB) and model the dynamics of multidrug resistant TB (MDR-TB) in Enugu, Nigeria.
Methodology: A total of 868 samples, from patients accessing DOTS services in designated centres within the zone, were screened by sputum-smear microscopy, while 207 samples were screened by Nucleic Acid Amplification (Xpert® MTB/Rif) Test (NAAT). A deterministic model was formulated to study the transmission dynamics of TB and MDR-TB, using live data generated through epidemiological study.
Results: The results showed TB prevalence values of 22.1% and 21.3% by sputum-smear and NAAT assays, respectively. Analysis of the rifampicin resistance patterns showed the highest occurrence of mutations (50%) along codons 523 – 527. Factors such as combination therapy, multiple therapy and compliance to treatment had influence on both prevalence and development of TB drug resistance in the population.
Conclusions: This first documentation of Rifampicin resistance patterns in MTB from Nigeria shows that a majority of rpoB gene mutations occurred along codons 523 to 527, contrary to the widely reported codon 531 mutation and that multiple interventions such as combination therapy, with good compliance to treatment are needed to reduce both prevalence and development of TB drug resistance in the population.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).