Demystifying the varying case fatality rates (CFR) of COVID-19 in India: Lessons learned and future directions
DOI:
https://doi.org/10.3855/jidc.13340Keywords:
COVID-19, Case Fatality Rate, CFR, fractional regression, predictorsAbstract
Introduction: At the end of the second week of June 2020, the SARS-CoV-2 responsible for COVID-19 infected above 7.5 million people and killed over 400,000 worldwide. Estimation of case fatality rate (CFR) and determining the associated factors are critical for developing targeted interventions.
Methodology: The state-level adjusted case fatality rate (aCFR) was estimated by dividing the cumulative number of deaths on a given day by the cumulative number confirmed cases 8 days before, which is the average time-lag between diagnosis and death. We conducted fractional regression analysis to determine the predictors of aCFR.
Results: As of 13 June 2020, India reported 225 COVID-19 cases per million population (95% CI:224-226); 6.48 deaths per million population (95% CI:6.34-6.61) and an aCFR of 3.88% (95% CI:3.81-3.97) with wide variation between states. High proportion of urban population and population above 60 years were significantly associated with increased aCFR (p=0.08, p=0.05), whereas, high literacy rate and high proportion of women were associated with reduced aCFR (p<0.001, p=0.03). The higher number of cases per million population (p=0.001), prevalence of diabetes and hypertension (p=0.012), cardiovascular diseases (p=0.05), and any cancer (p<0.001) were significantly associated with increased aCFR. The performance of state health systems and proportion of public health expenditure were not associated with aCFR.
Conclusions: Socio-demographic factors and burden of non-communicable diseases (NCDs) were found to be the predictors of aCFR. Focused strategies that would ensure early identification, testing and effective targeting of non-literate, elderly, urban population and people with comorbidities are critical to control the pandemic and fatalities.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).