Antibacterial activity of ciprofloxacin-impregnated 3D-printed polylactic acid discs: an in vitro study
DOI:
https://doi.org/10.3855/jidc.15267Keywords:
Ciprofloxacin, Escherichia coli, printing, discAbstract
Introduction: Three-dimensional (3D) printing technology allows incorporation of various substances including antibiotics into different structures. This study aimed to evaluate the antibacterial activity of ciprofloxacin-impregnated 3D discs against Escherichia coli.
Methodology: Polylactic acid pellets were coated with ciprofloxacin at 1% and 2% concentrations, then filaments were produced from these pellets, and antibiotic-containing discs were obtained using fused deposition modeling 3D printers. The working temperatures during filament extrusion and 3D printing processes were 200 °C and 215 °C, respectively. Therefore, in order to test the thermal stability of ciprofloxacin during these processes, the antibiotic was exposed to 200 °C and 215 °C in an oven, and then tested against E. coli. Following this, efficiencies of antibiotic-coated pellets, filaments and discs against E. coli were determined by diffusion tests.
Results: Ciprofloxacin heated at 200 °C and 215 °C was stable and retained its antibacterial activity. Pellets, filaments and discs coated with 1% or 2% concentration of ciprofloxacin produced inhibition zones in the culture plates. Increasing ciprofloxacin concentration did not significantly affect the diameter of inhibition zones (p > 0.05). Ciprofloxacin-containing polylactic acid pellets produced significantly larger inhibition zones than those of filaments and discs (p < 0.0001). The difference in zone diameters around ciprofloxacin-containing filaments and discs was not statistically significant (p > 0.05).
Conclusions: Ciprofloxacin-coated polylactic acid-based 3D discs displayed antibacterial activity against E. coli. This suggests that, various polylactic acid-based ciprofloxacin-containing 3D products can be obtained and evaluated for antibacterial activity in future studies.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).