A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China
DOI:
https://doi.org/10.3855/jidc.18037Keywords:
SARIMA, ETS, SVR, influenza, infectious diseaseAbstract
Introduction: Seasonal influenza is a serious public health issue in China. This study aimed to develop a new hybrid model for seasonal influenza incidence prediction and provide reference information for early warning management before outbreaks.
Methodology: Data on the monthly incidence of seasonal influenza between 2004 and 2018 were obtained from the China Public Health Science Data Center website. A single seasonal autoregressive integrated moving average (SARIMA) model and a single error trend and seasonality (ETS) model were built. On this basis, we constructed SARIMA, ETS, and support vector regression (SARIMA-ETS-SVR) hybrid model. The prediction performance was determined by comparing mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), and root mean square error (RMSE) indices.
Results: The optimum SARIMA model was SARIMA (0,1,0) (0,0,1)12. Error trend and seasonality (ETS) (M,A,M) was the SARIMA optimal model. For the fitting performance, the SARIMA-ETS-SVR hybrid model achieved the lowest values of MAE, MSE, and RMSE, in addition to the MAPE. In terms of predictive performance, the SARIMA-ETS-SVR hybrid model had the lowest MAE, MSE, MAPE, and RMSE values among the three models.
Conclusions: The study demonstrated that the SARIMA-ETS-SVR hybrid model provides better generalization ability than a single SARIMA model and a single ETS model, and the predictions will provide a useful tool for preventing this infectious disease.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Daren Zhao, Ruihua Zhang

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).